期刊文献+
共找到30,560篇文章
< 1 2 250 >
每页显示 20 50 100
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:5
1
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
Social-ecological perspective on the suicidal behaviour factors of early adolescents in China:a network analysis 被引量:2
2
作者 Yuan Li Peiying Li +5 位作者 Mengyuan Yuan Yonghan Li Xueying Zhang Juan Chen Gengfu Wang Puyu Su 《General Psychiatry》 CSCD 2024年第1期143-150,共8页
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl... Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts. 展开更多
关键词 network analysis PREVENTION
下载PDF
Geometric prior guided hybrid deep neural network for facial beauty analysis
3
作者 Tianhao Peng Mu Li +2 位作者 Fangmei Chen Yong Xu David Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期467-480,共14页
Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial ... Facial beauty analysis is an important topic in human society.It may be used as a guidance for face beautification applications such as cosmetic surgery.Deep neural networks(DNNs)have recently been adopted for facial beauty analysis and have achieved remarkable performance.However,most existing DNN-based models regard facial beauty analysis as a normal classification task.They ignore important prior knowledge in traditional machine learning models which illustrate the significant contribution of the geometric features in facial beauty analysis.To be specific,landmarks of the whole face and facial organs are introduced to extract geometric features to make the decision.Inspired by this,we introduce a novel dual-branch network for facial beauty analysis:one branch takes the Swin Transformer as the backbone to model the full face and global patterns,and another branch focuses on the masked facial organs with the residual network to model the local patterns of certain facial parts.Additionally,the designed multi-scale feature fusion module can further facilitate our network to learn complementary semantic information between the two branches.In model optimisation,we propose a hybrid loss function,where especially geometric regulation is introduced by regressing the facial landmarks and it can force the extracted features to convey facial geometric features.Experiments performed on the SCUT-FBP5500 dataset and the SCUT-FBP dataset demonstrate that our model outperforms the state-of-the-art convolutional neural networks models,which proves the effectiveness of the proposed geometric regularisation and dual-branch structure with the hybrid network.To the best of our knowledge,this is the first study to introduce a Vision Transformer into the facial beauty analysis task. 展开更多
关键词 deep neural networks face analysis face biometrics image analysis
下载PDF
Aspect-Guided Multi-Graph Convolutional Networks for Aspect-based Sentiment Analysis
4
作者 Yong Wang Ningchuang Yang +1 位作者 Duoqian Miao Qiuyi Chen 《Data Intelligence》 EI 2024年第3期771-791,共21页
The Aspect-Based Sentiment Analysis(ABSA)task is designed to judge the sentiment polarity of a particular aspect in a review.Recent studies have proved that GCN can capture syntactic and semantic features from depende... The Aspect-Based Sentiment Analysis(ABSA)task is designed to judge the sentiment polarity of a particular aspect in a review.Recent studies have proved that GCN can capture syntactic and semantic features from dependency graphs generated by dependency trees and semantic graphs generated by Multi-headed self-attention(MHSA).However,these approaches do not highlight the sentiment information associated with aspect in the syntactic and semantic graphs.We propose the Aspect-Guided Multi-Graph Convolutional Networks(AGGCN)for Aspect-Based Sentiment Classification.Specifically,we reconstruct two kinds of graphs,changing the weight of the dependency graph by distance from aspect and improving the semantic graph by Aspect-guided MHSA.For interactive learning of syntax and semantics,we dynamically fuse syntactic and semantic diagrams to generate syntactic-semantic graphs to learn emotional features jointly.In addition,Multi-dropout is added to solve the overftting of AGGCN in training.The experimental results on extensive datasets show that our model AGGCN achieves particularly advanced results and validates the effectiveness of the model. 展开更多
关键词 Graph convolutional networks Aspect-based sentiment analysis Multi-headed attention BERT encoder
原文传递
A Multilayer Network Constructed for Herb and Prescription Efficacy Analysis
5
作者 Xindi Huang Liwei Liang +3 位作者 Sakirin Tam Hao Liang Xiong Cai Changsong Ding 《Computer Systems Science & Engineering》 2024年第3期691-704,共14页
Chinese Medicine(CM)has been widely used as an important avenue for disease prevention and treatment in China especially in the form of CM prescriptions combining sets of herbs to address patients’symptoms and syndro... Chinese Medicine(CM)has been widely used as an important avenue for disease prevention and treatment in China especially in the form of CM prescriptions combining sets of herbs to address patients’symptoms and syndromes.However,the selection and compatibility of herbs are complex and abstract due to intrinsic relationships between herbal properties and their overall functions.Network analysis is applied to demonstrate the complex relationships between individual herbal efficacy and the overall function of CM prescriptions.To illustrate their connections and correlations,prescription function(PF),prescription herb(PH),and herbal efficacy(HE)intranetworks are proposed based on CM theory to identify relationships between herbs and prescriptions.These three networks are then connected by PF-PH and PH-HE interlayer networks adopting herb dosage to form a multidimensional heterogeneous network,a Prescription-Herb-Function Network(PHFN).The network is applied to 112 classic prescriptions from Treatise on Exogenous Febrile and Miscellaneous Diseases to illustrate the application of PHFN.The PHFN is constructed including 146 functions in PF intra network,89 herbs in the PH intra network,and 163 herbal efficacies in the HE intra network.The results show that herb pairs with synergistic actions have stronger relevance,such as licorice-cassia twig,licorice-Chinese date,fresh ginger-Chinese date,etc.The integration of dosage to the network helps to indicate the main herbs for cluster analysis and automatic formulation.PHFN also reveals the internal relationships between the functions of prescriptions and composed herbal efficacies. 展开更多
关键词 Chinese medicine HERB FORMULA network analysis herb dosage
下载PDF
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines
6
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production Open-pit mining Deep learning Principal component analysis(PCA) Artificial neural network Mining engineering
下载PDF
A CSMA/CA based MAC protocol for hybrid Power-line/Visible-light communication networks:Design and analysis
7
作者 Sheng Hao Huyin Zhang +2 位作者 Fei Yang Chenghao Li Jing Wang 《Digital Communications and Networks》 SCIE CSCD 2024年第2期481-497,共17页
Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and har... Hybrid Power-line/Visible-light Communication(HPVC)network has been one of the most promising Cooperative Communication(CC)technologies for constructing Smart Home due to its superior communication reliability and hardware efficiency.Current research on HPVC networks focuses on the performance analysis and optimization of the Physical(PHY)layer,where the Power Line Communication(PLC)component only serves as the backbone to provide power to light Emitting Diode(LED)devices.So designing a Media Access Control(MAC)protocol remains a great challenge because it allows both PLC and Visible Light Communication(VLC)components to operate data transmission,i.e.,to achieve a true HPVC network CC.To solve this problem,we propose a new HPC network MAC protocol(HPVC MAC)based on Carrier Sense Multiple Access/Collision Avoidance(CSMA/CA)by combining IEEE 802.15.7 and IEEE 1901 standards.Firstly,we add an Additional Assistance(AA)layer to provide the channel selection strategies for sensor stations,so that they can complete data transmission on the selected channel via the specified CSMA/CA mechanism,respectively.Based on this,we give a detailed working principle of the HPVC MAC,followed by the construction of a joint analytical model for mathematicalmathematical validation of the HPVC MAC.In the modeling process,the impacts of PHY layer settings(including channel fading types and additive noise feature),CSMA/CA mechanisms of 802.15.7 and 1901,and practical configurations(such as traffic rate,transit buffer size)are comprehensively taken into consideration.Moreover,we prove the proposed analytical model has the solvability.Finally,through extensive simulations,we characterize the HPVC MAC performance under different system parameters and verify the correctness of the corresponding analytical model with an average error rate of 4.62%between the simulation and analytical results. 展开更多
关键词 Hybrid power-line/Visible light communication (HPVC)networks MAC protocol CSMA/CA IEEE 802.15.7 IEEE 1901 Performance analysis
下载PDF
Analysis of Urban Agglomeration Network Structure Based on Baidu Migration Data: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Urban Agglomeration
8
作者 XIA Yuan WANG Bin 《Journal of Landscape Research》 2024年第4期47-50,共4页
The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure ... The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure of urban agglomeration in the Greater Bay Area through the use of social network analysis method.This is the inaugural application of big data based on location services in the study of urban agglomeration network structure,which represents a novel research perspective on this topic.The study reveals that the density of network linkages in the Greater Bay Area urban agglomeration has reached 100%,indicating a mature network-like spatial structure.This structure has given rise to three distinct communities:Shenzhen-Dongguan-Huizhou,Guangzhou-Foshan-Zhaoqing,and Zhuhai-Zhongshan-Jiangmen.Additionally,cities within the Greater Bay Area urban agglomeration play different roles,suggesting that varying development strategies may be necessary to achieve staggered development.The study demonstrates that large datasets represented by LBS can offer novel insights and methodologies for the examination of urban agglomeration network structures,contingent on the appropriate mining and processing of the data. 展开更多
关键词 Baidu migration data Social network analysis Urban agglomeration network structure Greater Bay Area urban agglomeration
下载PDF
Application of Bayesian Analysis Based on Neural Network and Deep Learning in Data Visualization
9
作者 Jiying Yang Qi Long +1 位作者 Xiaoyun Zhu Yuan Yang 《Journal of Electronic Research and Application》 2024年第4期88-93,共6页
This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,tradit... This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,traditional data analysis methods have been unable to meet the needs.Research methods include building neural networks and deep learning models,optimizing and improving them through Bayesian analysis,and applying them to the visualization of large-scale data sets.The results show that the neural network combined with Bayesian analysis and deep learning method can effectively improve the accuracy and efficiency of data visualization,and enhance the intuitiveness and depth of data interpretation.The significance of the research is that it provides a new solution for data visualization in the big data environment and helps to further promote the development and application of data science. 展开更多
关键词 Neural network Deep learning Bayesian analysis Data visualization Big data environment
下载PDF
Mechanisms of Sophora flavescens in the treatment of cervical squamous cell carcinoma based on comprehensive biological analysis,network pharmacology,and experimental verification
10
作者 Ning-Jia Song Yuan Wang Ya-Ying Lin 《Cancer Advances》 2024年第10期1-8,共8页
Objective:This study used comprehensive bioinformatics analysis and network pharmacology analysis to investigate the potentially relevant mechanisms of Sophora flavescens against cervical squamous cell carcinoma.Metho... Objective:This study used comprehensive bioinformatics analysis and network pharmacology analysis to investigate the potentially relevant mechanisms of Sophora flavescens against cervical squamous cell carcinoma.Methods:Consistently altered genes involved in cervical squamous cell cancerization were analyzed in the GEO database.The chemical ingredients and target genes of Sophora flavescens were explored using the TCMSP database.We obtained the potential therapeutic targets of Sophora flavescens by intersecting the above genesets and validated them in the GEPIA database.The interaction between Sophora flavescens and target genes was predicted by molecular docking.RT-qPCR was used to verify the changes of target genes in HeLa cells treated with Sophora flavescens.Single-gene GSEA functional analysis were performed to determine the molecular mechanisms.Results:Fifteen genes related to the transformation of cervical squamous cell carcinoma were identified,among which AR and ESR1 were confirmed as targets for kaempferol,wighteone,formononetin,and phaseolinon.These compounds are the active ingredients in Sophora flavescens.Low expressions of AR and ESR1 correlate with a poor prognosis,while Sophora flavescens treatment increases the expression of AR and ESR1 in HeLa.GSEA analysis showed that AR and ESR1 mainly participate in the epithelial-mesenchymal transition in cervical squamous cell carcinoma.Conclusion:Sophora flavescens exert anti-tumor effects by targeting AR and ESR1,which may regulate cancer metastasis. 展开更多
关键词 cervical squamous cell carcinoma biological analysis network pharmacology Sophora flavescens
下载PDF
Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network 被引量:6
11
作者 Zicheng Xin Jiangshan Zhang +2 位作者 Yu Jin Jin Zheng Qing Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期335-344,共10页
The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal compon... The composition control of molten steel is one of the main functions in the ladle furnace(LF)refining process.In this study,a feasible model was established to predict the alloying element yield using principal component analysis(PCA)and deep neural network(DNN).The PCA was used to eliminate collinearity and reduce the dimension of the input variables,and then the data processed by PCA were used to establish the DNN model.The prediction hit ratios for the Si element yield in the error ranges of±1%,±3%,and±5%are 54.0%,93.8%,and98.8%,respectively,whereas those of the Mn element yield in the error ranges of±1%,±2%,and±3%are 77.0%,96.3%,and 99.5%,respectively,in the PCA-DNN model.The results demonstrate that the PCA-DNN model performs better than the known models,such as the reference heat method,multiple linear regression,modified backpropagation,and DNN model.Meanwhile,the accurate prediction of the alloying element yield can greatly contribute to realizing a“narrow window”control of composition in molten steel.The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry. 展开更多
关键词 ladle furnace element yield principal component analysis deep neural network statistical evaluation
下载PDF
Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning
12
作者 Aizaz Ali Maqbool Khan +2 位作者 Khalil Khan Rehan Ullah Khan Abdulrahman Aloraini 《Computers, Materials & Continua》 SCIE EI 2024年第4期713-733,共21页
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentime... Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language. 展开更多
关键词 Urdu sentiment analysis convolutional neural networks recurrent neural network deep learning natural language processing neural networks
下载PDF
Trends and hotspots in gastrointestinal neoplasms risk assessment: A bibliometric analysis from 1984 to 2022
13
作者 Qiang-Qiang Fu Le Ma +5 位作者 Xiao-Min Niu Hua-Xin Zhao Xu-Hua Ge Hua Jin De-Hua Yu Sen Yang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第6期2842-2861,共20页
BACKGROUND Gastrointestinal neoplasm(GN)significantly impact the global cancer burden and mortality,necessitating early detection and treatment.Understanding the evolution and current state of research in this field i... BACKGROUND Gastrointestinal neoplasm(GN)significantly impact the global cancer burden and mortality,necessitating early detection and treatment.Understanding the evolution and current state of research in this field is vital.AIM To conducts a comprehensive bibliometric analysis of publications from 1984 to 2022 to elucidate the trends and hotspots in the GN risk assessment research,focusing on key contributors,institutions,and thematic evolution.METHODS This study conducted a bibliometric analysis of data from the Web of Science Core Collection database using the"bibliometrix"R package,VOSviewer,and CiteSpace.The analysis focused on the distribution of publications,contributions by institutions and countries,and trends in keywords.The methods included data synthesis,network analysis,and visualization of international collaboration networks.RESULTS This analysis of 1371 articles on GN risk assessment revealed a notable evolution in terms of research focus and collaboration.It highlights the United States'critical role in advancing this field,with significant contributions from institutions such as Brigham and Women's Hospital and the National Cancer Institute.The last five years,substantial advancements have been made,representing nearly 45%of the examined literature.Publication rates have dramatically increased,from 20 articles in 2002 to 112 in 2022,reflecting intensified research efforts.This study underscores a growing trend toward interdisciplinary and international collaboration,with the Journal of Clinical Oncology standing out as a key publication outlet.This shift toward more comprehensive and collaborative research methods marks a significant step in addressing GN risks.CONCLUSION This study underscores advancements in GN risk assessment through genetic analyses and machine learning and reveals significant geographical disparities in research emphasis.This calls for enhanced global collaboration and integration of artificial intelligence to improve cancer prevention and treatment accuracy,ultimately enhancing worldwide patient care. 展开更多
关键词 Gastrointestinal neoplasms Bibliometric analysis Risk assessment network analysis Research trends
下载PDF
Multi-Physics Coupled Acoustic-Mechanics Analysis and Synergetic Optimization for a Twin-Fluid Atomization Nozzle
14
作者 Wenying Li Yanying Li +4 位作者 Yingjie Lu Jinhuan Xu Bo Chen Li Zhang Yanbiao Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期204-223,共20页
Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particul... Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research. 展开更多
关键词 Twin-fluid nozzle BP neural network Multi-objective optimization Multi-physics coupled Acousticmechanics analysis Genetic algorithm
下载PDF
Physics-informed deep learning for fringe pattern analysis
15
作者 Wei Yin Yuxuan Che +6 位作者 Xinsheng Li Mingyu Li Yan Hu Shijie Feng Edmund Y.Lam Qian Chen Chao Zuo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第1期4-15,共12页
Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives... Recently,deep learning has yielded transformative success across optics and photonics,especially in optical metrology.Deep neural networks (DNNs) with a fully convolutional architecture (e.g.,U-Net and its derivatives) have been widely implemented in an end-to-end manner to accomplish various optical metrology tasks,such as fringe denoising,phase unwrapping,and fringe analysis.However,the task of training a DNN to accurately identify an image-to-image transform from massive input and output data pairs seems at best naive,as the physical laws governing the image formation or other domain expertise pertaining to the measurement have not yet been fully exploited in current deep learning practice.To this end,we introduce a physics-informed deep learning method for fringe pattern analysis (PI-FPA) to overcome this limit by integrating a lightweight DNN with a learning-enhanced Fourier transform profilometry (Le FTP) module.By parameterizing conventional phase retrieval methods,the Le FTP module embeds the prior knowledge in the network structure and the loss function to directly provide reliable phase results for new types of samples,while circumventing the requirement of collecting a large amount of high-quality data in supervised learning methods.Guided by the initial phase from Le FTP,the phase recovery ability of the lightweight DNN is enhanced to further improve the phase accuracy at a low computational cost compared with existing end-to-end networks.Experimental results demonstrate that PI-FPA enables more accurate and computationally efficient single-shot phase retrieval,exhibiting its excellent generalization to various unseen objects during training.The proposed PI-FPA presents that challenging issues in optical metrology can be potentially overcome through the synergy of physics-priors-based traditional tools and data-driven learning approaches,opening new avenues to achieve fast and accurate single-shot 3D imaging. 展开更多
关键词 optical metrology deep learning physics-informed neural networks fringe analysis phase retrieval
下载PDF
Aspect-Level Sentiment Analysis Based on Deep Learning
16
作者 Mengqi Zhang Jiazhao Chai +2 位作者 Jianxiang Cao Jialing Ji Tong Yi 《Computers, Materials & Continua》 SCIE EI 2024年第3期3743-3762,共20页
In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also gr... In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also greatly improve the performance of models.However,previous studies did not take into account the relationship between user feature extraction and contextual terms.To address this issue,we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method.To be specific,we design user comment feature extraction(UCFE)to distill salient features from users’historical comments and transform them into representative user feature vectors.Then,the aspect-sentence graph convolutional neural network(ASGCN)is used to incorporate innovative techniques for calculating adjacency matrices;meanwhile,ASGCN emphasizes capturing nuanced semantics within relationships among aspect words and syntactic dependency types.Afterward,three embedding methods are devised to embed the user feature vector into the ASGCN model.The empirical validations verify the effectiveness of these models,consistently surpassing conventional benchmarks and reaffirming the indispensable role of deep learning in advancing sentiment analysis methodologies. 展开更多
关键词 Aspect-level sentiment analysis deep learning graph convolutional neural network user features syntactic dependency tree
下载PDF
Transglutaminase 2 serves as a pathogenic hub gene of KRAS mutant colon cancer based on integrated analysis
17
作者 Wei-Bin Peng Yu-Ping Li +1 位作者 Yong Zeng Kai Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第5期2074-2090,共17页
BACKGROUND Colon cancer is acknowledged as one of the most common malignancies worldwide,ranking third in United States regarding incidence and mortality.Notably,approximately 40%of colon cancer cases harbor oncogenic... BACKGROUND Colon cancer is acknowledged as one of the most common malignancies worldwide,ranking third in United States regarding incidence and mortality.Notably,approximately 40%of colon cancer cases harbor oncogenic KRAS mutations,resulting in the continuous activation of epidermal growth factor receptor signaling.AIM To investigate the key pathogenic genes in KRAS mutant colon cancer holds considerable importance.METHODS Weighted gene co-expression network analysis,in combination with additional bioinformatics analysis,were conducted to screen the key factors driving the progression of KRAS mutant colon cancer.Meanwhile,various in vitro experiments were also conducted to explore the biological function of transglutaminase 2(TGM2).RESULTS Integrated analysis demonstrated that TGM2 acted as an independent prognostic factor for progression-free survival.Immunohistochemical analysis on tissue microarrays revealed that TGM2 was associated with an elevated probability of perineural invasion in patients with KRAS mutant colon cancer.Additionally,biological roles of the key gene TGM2 was also assessed,suggesting that the downregulation of TGM2 attenuated the proliferation,invasion,and migration of the KRAS mutant colon cancer cell line.CONCLUSION This study underscores the potential significance of TGM2 in the progression of KRAS mutant colon cancer.This insight not only offers a theoretical foundation for therapeutic approaches but also highlights the need for additional clinical trials and fundamental research to support our preliminary findings. 展开更多
关键词 Colon cancer KRAS mutation Transglutaminase 2 Weighted gene co-expression network analysis
下载PDF
Operational requirements analysis method based on question answering of WEKG
18
作者 ZHANG Zhiwei DOU Yajie +3 位作者 XU Xiangqian MA Yufeng JIANG Jiang TAN Yuejin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期386-395,共10页
The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challen... The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challenge is that the existing weapons and equipment data fails to carry out structured knowledge representation, and knowledge navigation based on natural language cannot efficiently support the WEORA. To solve above problem, this research proposes a method based on question answering(QA) of weapons and equipment knowledge graph(WEKG) to construct and navigate the knowledge related to weapons and equipment in the WEORA. This method firstly constructs the WEKG, and builds a neutral network-based QA system over the WEKG by means of semantic parsing for knowledge navigation. Finally, the method is evaluated and a chatbot on the QA system is developed for the WEORA. Our proposed method has good performance in the accuracy and efficiency of searching target knowledge, and can well assist the WEORA. 展开更多
关键词 operational requirement analysis weapons and equipment knowledge graph(WEKG) question answering(QA) neutral network
下载PDF
Well interference evaluation considering complex fracture networks through pressure and rate transient analysis in unconventional reservoirs 被引量:1
19
作者 Jia-Zheng Qin Qian-Hu Zhong +2 位作者 Yong Tang Wei Yu Kamy Sepehrnoori 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期337-349,共13页
Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vit... Severe well interference through complex fracture networks(CFNs)can be observed among multi-well pads in low permeability reservoirs.The well interference analysis between multi-fractured horizontal wells(MFHWs)is vitally important for reservoir effective development.Well interference has been historically investigated by pressure transient analysis,while it has shown that rate transient analysis has great potential in well interference diagnosis.However,the impact of complex fracture networks(CFNs)on rate transient behavior of parent well and child well in unconventional reservoirs is still not clear.To further investigate,this paper develops an integrated approach combining pressure and rate transient analysis for well interference diagnosis considering CFNs.To perform multi-well simulation considering CFNs,non-intrusive embedded discrete fracture model approach was applied for coupling fracture with reservoir models.The impact of CFN including natural fractures and frac-hits on pressure and rate transient behavior in multi-well system was investigated.On a logelog plot,interference flow and compound linear flow are two new flow regimes caused by nearby producers.When both NFs and frac-hits are present in the reservoir,frac-hits have a greater impact on well#1 which contains frac-hits,and NFs have greater impact on well#3 which does not have frac-hits.For all well producing circumstances,it might be challenging to see divergence during pseudosteady state flow brought on by frac-hits on the logelog plot.Besides,when NFs occur,reservoir depletion becomes noticeable in comparison to frac-hits in pressure distribution.Application of this integrated approach demonstrates that it works well to characterize the well interference among different multi-fractured horizontal wells in a well pad.Better reservoir evaluation can be acquired based on the new features observed in the novel model,demonstrating the practicability of the proposed approach.The findings of this study can help for better evaluating well interference degree in multi-well systems combing PTA and RTA,which can reduce the uncertainty and improve the accuracy of the well interference analysis based on both field pressure and rate data. 展开更多
关键词 Well interference Numerical rate transient analysis Numerical pressure transient analysis Complex fracture networks Embedded discrete fracture model
下载PDF
A Parallel Approach for Sentiment Analysis on Social Networks Using Spark 被引量:1
20
作者 M.Mohamed Iqbal K.Latha 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1831-1842,共12页
The public is increasingly using social media platforms such as Twitter and Facebook to express their views on a variety of topics.As a result,social media has emerged as the most effective and largest open source for... The public is increasingly using social media platforms such as Twitter and Facebook to express their views on a variety of topics.As a result,social media has emerged as the most effective and largest open source for obtaining public opinion.Single node computational methods are inefficient for sentiment analysis on such large datasets.Supercomputers or parallel or distributed proces-sing are two options for dealing with such large amounts of data.Most parallel programming frameworks,such as MPI(Message Processing Interface),are dif-ficult to use and scale in environments where supercomputers are expensive.Using the Apache Spark Parallel Model,this proposed work presents a scalable system for sentiment analysis on Twitter.A Spark-based Naive Bayes training technique is suggested for this purpose;unlike prior research,this algorithm does not need any disk access.Millions of tweets have been classified using the trained model.Experiments with various-sized clusters reveal that the suggested strategy is extremely scalable and cost-effective for larger data sets.It is nearly 12 times quicker than the Map Reduce-based model and nearly 21 times faster than the Naive Bayes Classifier in Apache Mahout.To evaluate the framework’s scalabil-ity,we gathered a large training corpus from Twitter.The accuracy of the classi-fier trained with this new dataset was more than 80%. 展开更多
关键词 Social networks sentiment analysis big data SPARK tweets classification
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部