This paper concerns the problem of the Kolmogorov n-width, the linear re-width, the Gel'fand n-width and the Bernstein re-width of Sobolev classes of the periodic multivariate functions in the space Lp(Td) and the...This paper concerns the problem of the Kolmogorov n-width, the linear re-width, the Gel'fand n-width and the Bernstein re-width of Sobolev classes of the periodic multivariate functions in the space Lp(Td) and the average Bernstein o-width, average Kolmogorov o-widths, the average linear o-widths of Sobolev classes of the multivariate functions in the space LP(R ), where p = (p1,…,pd), 1 < Pj < ∞o, j = 1,2,…,d, or pj = ∞,j = 1,2,…, d. Their weak asymptotic behaviors are established for the corresponding quantities.展开更多
This paper deals with the parallel information-based complexity of numerical integration on Sobolev class. We obtain tight bounds on the complexity, considered as a function of two variables simultaneously:the number ...This paper deals with the parallel information-based complexity of numerical integration on Sobolev class. We obtain tight bounds on the complexity, considered as a function of two variables simultaneously:the number of processors, the rquired precision. This result seems to be new even in serial case.展开更多
We study the approximation of the imbedding of functions from anisotropic and generalized Sobolev classes into L q ([0, 1]d) space in the quantum model of computation. Based on the quantum algorithms for approximation...We study the approximation of the imbedding of functions from anisotropic and generalized Sobolev classes into L q ([0, 1]d) space in the quantum model of computation. Based on the quantum algorithms for approximation of finite imbedding from L p N to L q N , we develop quantum algorithms for approximating the imbedding from anisotropic Sobolev classes B(W p r ([0, 1] d )) to L q ([0, 1] d ) space for all 1 ? q,p ? ∞ and prove their optimality. Our results show that for p < q the quantum model of computation can bring a speedup roughly up to a squaring of the rate in the classical deterministic and randomized settings.展开更多
We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobole...We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobolev class R(Wpr([0, 1]d)) (r R+d). Then combining this result with our previous one we determine the optimal bound of n-th minimal query error for anisotropic Hblder- Nikolskii class R(H∞r([0,1]d)) and Sobolev class R(W∞r([0,1]d)). The results show that for these two types of classes the quantum algorithms give significant speed up over classical deterministic and randomized algorithms.展开更多
The article concerns the average onesided widths of the Sobolev and Besov classes and the classes of functions with bounded moduli of smoothness. The weak asymptotic results are obtained for the corresponding quantities.
For β 〉 0 and an integer r 〉 2, denote by H∞,β those 2π-periodic, real-valued functions f on R, which are analytic in Sβ = {z ∈ C: [ImzI 〈β} and satisfy the restriction If(r)(z)[ ≤ 1, z ∈ Sβ. The opt...For β 〉 0 and an integer r 〉 2, denote by H∞,β those 2π-periodic, real-valued functions f on R, which are analytic in Sβ = {z ∈ C: [ImzI 〈β} and satisfy the restriction If(r)(z)[ ≤ 1, z ∈ Sβ. The optimal quadrature formulae about information composed of the values of a function and its kth (k : 1,..., r - 1) derivatives on free knots for the classes H∞,β are obtained, and the error estimates of the optimal quadrature formulae are exactly determined.展开更多
As usual, denote by KWr[a,b] the Sobolev class consisting of every function whose (r-1)th derivative is absolutely continuous on the interval [a,b] and rth derivative is bounded by K a.e. In [a,b]. For a function f ∈...As usual, denote by KWr[a,b] the Sobolev class consisting of every function whose (r-1)th derivative is absolutely continuous on the interval [a,b] and rth derivative is bounded by K a.e. In [a,b]. For a function f ∈ KWr[a,b], its values and derivatives up to r-1 order at a set of nodes x are known. These values are said to be the given Hermite information.This work reports the results on the best quadrature based on the given Hermite information for the class KWr[a,b]. Existence and concrete construction issue of the best quadrature are settled down by a perfect spline interpolation. It turns out that the best quadrature depends on a system of algebraic equations satisfied by a set of free nodes of the interpolation perfect spline. From our another new result, it is shown that the system can be converted in a closed form to two single-variable polynomial equations, each being of degree approximately r/2. As a by-product,the best interpolation formula for the class KWr[a,b] is also obtained.展开更多
Let M(u) be an N-function, L_r(f, x) and K_r(f, x) are Bak operator and Kantorovich operator, W_M(L_r(f)) and W_M(K_r(f)) are the Sobolev-Orlicz classes defined by L_r(f, x), K_r(f, x) and M(u). In this paper we give ...Let M(u) be an N-function, L_r(f, x) and K_r(f, x) are Bak operator and Kantorovich operator, W_M(L_r(f)) and W_M(K_r(f)) are the Sobolev-Orlicz classes defined by L_r(f, x), K_r(f, x) and M(u). In this paper we give the asymptotic estimates of the n-K widths d_n(W_M(L_r(f)), L_2[0, 1]) and d_n(W_M(K_r(f)), L_2[0, 1]).展开更多
Using the method of construction, with the help of inequalities, we research the Muntz rational approximation of two kinds of special function classes, and give the corresponding estimates of approximation rates of th...Using the method of construction, with the help of inequalities, we research the Muntz rational approximation of two kinds of special function classes, and give the corresponding estimates of approximation rates of these classes under widely con- ditions. Because of the Orlicz Spaces is bigger than continuous function space and the Lp space, so the results of this paper has a certain expansion significance.展开更多
基金The project is supported partly by the NationalNatural Science Foundation of China(10071007)and partly by the Foundation for University Key Teachers bythe Ministry of Education of China and partly by the Scientific Research Foundation for Returned Ov
文摘This paper concerns the problem of the Kolmogorov n-width, the linear re-width, the Gel'fand n-width and the Bernstein re-width of Sobolev classes of the periodic multivariate functions in the space Lp(Td) and the average Bernstein o-width, average Kolmogorov o-widths, the average linear o-widths of Sobolev classes of the multivariate functions in the space LP(R ), where p = (p1,…,pd), 1 < Pj < ∞o, j = 1,2,…,d, or pj = ∞,j = 1,2,…, d. Their weak asymptotic behaviors are established for the corresponding quantities.
基金this work was supported by china State Major Key Project for Basic Researchers
文摘This paper deals with the parallel information-based complexity of numerical integration on Sobolev class. We obtain tight bounds on the complexity, considered as a function of two variables simultaneously:the number of processors, the rquired precision. This result seems to be new even in serial case.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10501026, 60675010,10626029 and 60572113)the China Postdoctoral Science Foundation (Grant No. 20070420708)
文摘We study the approximation of the imbedding of functions from anisotropic and generalized Sobolev classes into L q ([0, 1]d) space in the quantum model of computation. Based on the quantum algorithms for approximation of finite imbedding from L p N to L q N , we develop quantum algorithms for approximating the imbedding from anisotropic Sobolev classes B(W p r ([0, 1] d )) to L q ([0, 1] d ) space for all 1 ? q,p ? ∞ and prove their optimality. Our results show that for p < q the quantum model of computation can bring a speedup roughly up to a squaring of the rate in the classical deterministic and randomized settings.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10501026 and 60675010)
文摘We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobolev class R(Wpr([0, 1]d)) (r R+d). Then combining this result with our previous one we determine the optimal bound of n-th minimal query error for anisotropic Hblder- Nikolskii class R(H∞r([0,1]d)) and Sobolev class R(W∞r([0,1]d)). The results show that for these two types of classes the quantum algorithms give significant speed up over classical deterministic and randomized algorithms.
基金Supported by the Foundation of Education Department of Yunnan Province (07Z10533)Supported partly by the National Natural Science Foundation of China (10471010)+1 种基金partly by the project "Representation Theory and Related Topics" of the "985 program" of Beijing Normal UniversitySupported by the Science Foundation of Yunnan University (2008YB027)
文摘The article concerns the average onesided widths of the Sobolev and Besov classes and the classes of functions with bounded moduli of smoothness. The weak asymptotic results are obtained for the corresponding quantities.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10671019 and 10971251), National Natural Science Special-purpose Foundation of China (Grant No. 10826079) and Chinese Universities Scientific Fund (Grant No. 2009-2-05)
文摘For β 〉 0 and an integer r 〉 2, denote by H∞,β those 2π-periodic, real-valued functions f on R, which are analytic in Sβ = {z ∈ C: [ImzI 〈β} and satisfy the restriction If(r)(z)[ ≤ 1, z ∈ Sβ. The optimal quadrature formulae about information composed of the values of a function and its kth (k : 1,..., r - 1) derivatives on free knots for the classes H∞,β are obtained, and the error estimates of the optimal quadrature formulae are exactly determined.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10471128).
文摘As usual, denote by KWr[a,b] the Sobolev class consisting of every function whose (r-1)th derivative is absolutely continuous on the interval [a,b] and rth derivative is bounded by K a.e. In [a,b]. For a function f ∈ KWr[a,b], its values and derivatives up to r-1 order at a set of nodes x are known. These values are said to be the given Hermite information.This work reports the results on the best quadrature based on the given Hermite information for the class KWr[a,b]. Existence and concrete construction issue of the best quadrature are settled down by a perfect spline interpolation. It turns out that the best quadrature depends on a system of algebraic equations satisfied by a set of free nodes of the interpolation perfect spline. From our another new result, it is shown that the system can be converted in a closed form to two single-variable polynomial equations, each being of degree approximately r/2. As a by-product,the best interpolation formula for the class KWr[a,b] is also obtained.
基金Supported by the National Natural Science Foundation of China(11161033)Supported by the Inner Mongolia Normal University Talent Project Foundation(RCPY-2-2012-K-036)+1 种基金Supported by the Inner Mongolia Normal University Graduate Research Innovation Foundation(CXJJS14053)Supported by the Inner Mongolia Autonomous Region Graduate Research Innovation Foundation(S20141013525)
文摘Let M(u) be an N-function, L_r(f, x) and K_r(f, x) are Bak operator and Kantorovich operator, W_M(L_r(f)) and W_M(K_r(f)) are the Sobolev-Orlicz classes defined by L_r(f, x), K_r(f, x) and M(u). In this paper we give the asymptotic estimates of the n-K widths d_n(W_M(L_r(f)), L_2[0, 1]) and d_n(W_M(K_r(f)), L_2[0, 1]).
基金supported by the National Science Foundation of China(No.11161033)Inner Mongolia Normal University Talent Project Foundation(No.RCPY-2-2012-K-036)
文摘Using the method of construction, with the help of inequalities, we research the Muntz rational approximation of two kinds of special function classes, and give the corresponding estimates of approximation rates of these classes under widely con- ditions. Because of the Orlicz Spaces is bigger than continuous function space and the Lp space, so the results of this paper has a certain expansion significance.
基金Supported by Institution of Higher Education Scientific Research Project in Ningxia(NGY2017011)Natural Science Foundations of Ningxia(NZ15055)+1 种基金Natural Science Foundations of China(1156105511461053)