In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality...In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.展开更多
Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be poin...Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be pointed out that we con- sider whole ranges of p and q, i.e., 0 〈 p ≤∞ and 0 〈 q ≤∞.展开更多
Some sufficient conditions for the F-Sobolev inequality for symmetric forms are presented in terms of new Cheeger’s constants. Meanwhile, an estimate of the F-Sobolev constants is obtained.
Here we consider some weighted logarithmic Sobolev inequalities which can be used in the theory of singular Riemanian manifolds.We give the necessary and sufficient conditions such that the 1-dimension weighted logari...Here we consider some weighted logarithmic Sobolev inequalities which can be used in the theory of singular Riemanian manifolds.We give the necessary and sufficient conditions such that the 1-dimension weighted logarithmic Sobolev inequality is true and obtain a new estimate on the entropy.展开更多
The best constant of discrete Sobolev inequality on the truncated tetrahedron with a weight which describes 2 kinds of spring constants or bond distances. Main results coincides with the ones of known results by Kamet...The best constant of discrete Sobolev inequality on the truncated tetrahedron with a weight which describes 2 kinds of spring constants or bond distances. Main results coincides with the ones of known results by Kametaka et al. under the assumption of uniformity of the spring constants. Since the buckyball fullerene C60 has 2 kinds of edges, destruction of uniformity makes us proceed the application to the chemistry of fullerenes.展开更多
The authors prove a sharp logarithmic Sobolev inequality which holds for compact submanifolds without boundary in Riemannian manifolds with nonnegative sectional curvature of arbitrary dimension and codimension.Like t...The authors prove a sharp logarithmic Sobolev inequality which holds for compact submanifolds without boundary in Riemannian manifolds with nonnegative sectional curvature of arbitrary dimension and codimension.Like the Michael-Simon Sobolev inequality,this inequality includes a term involving the mean curvature.This extends a recent result of Brendle with Euclidean setting.展开更多
In this paper,we establish an improved Hardy–Littlewood–Sobolev inequality on Snunder higher-order moments constraint.Moreover,by constructing precise test functions,using improved Hardy–Littlewood–Sobolev inequal...In this paper,we establish an improved Hardy–Littlewood–Sobolev inequality on Snunder higher-order moments constraint.Moreover,by constructing precise test functions,using improved Hardy–Littlewood–Sobolev inequality on S^(n),we show such inequality is almost optimal in critical case.As an application,we give a simpler proof of the existence of the maximizer for conformal Hardy–Littlewood–Sobolev inequality.展开更多
A uniform logarithmic Sobolev inequality,a uniform Sobolev inequality and a uniformκ-noncollapsing estimate along the Ricci flow are established in the situation that a certain smallest eigenvalue for the initial met...A uniform logarithmic Sobolev inequality,a uniform Sobolev inequality and a uniformκ-noncollapsing estimate along the Ricci flow are established in the situation that a certain smallest eigenvalue for the initial metric is zero.展开更多
We establish Talagrand's T2-transportation inequalities for infinite dimensional dissipative diffusions with sharp constants, through Galerkin type's approximations and the known results in the finite dimensional ca...We establish Talagrand's T2-transportation inequalities for infinite dimensional dissipative diffusions with sharp constants, through Galerkin type's approximations and the known results in the finite dimensional case. Furthermore in the additive noise case we prove also logarithmic Sobolev inequalities with sharp constants. Applications to Reaction- Diffusion equations are provided.展开更多
We provide some lower bounds on the deficit in the Gaussian logarithmic Sobolev inequality in terms of the so-called Stein characterization of the Gaussian distribution.The techniques are based on the representation o...We provide some lower bounds on the deficit in the Gaussian logarithmic Sobolev inequality in terms of the so-called Stein characterization of the Gaussian distribution.The techniques are based on the representation of the relative Fisher information along the Ornstein-Uhlenbeck semigroup by the Minimum Mean-Square Error from information theory.展开更多
Let M be an n dimensional complete Riemannian manifold satisfying the doublingvolume property and an on-diagonal heat kernel estimate. The necessary-sufficientcondition for the Sobolev inequality ‖f‖q ≤ Cn,,v,p,q(...Let M be an n dimensional complete Riemannian manifold satisfying the doublingvolume property and an on-diagonal heat kernel estimate. The necessary-sufficientcondition for the Sobolev inequality ‖f‖q ≤ Cn,,v,p,q(‖▽f‖p+‖fp) (2≤p<q<∞) is given.展开更多
In this paper the author proves the equivalence of hypercontractivity and logarithmic Sobolev inequality for q-Ornstein-Uhlenbeck semigroup Ut(q)=Γq(e-tI)(-1≤q≤1),whereΓq is a q-Gaussian functor.
Some estimates of logarithmic Sobolev constant for general symmetric forms are obtained in terms of new Cheeger’s constants. The estimates can be sharp in some sense.
This is the second part of the paper for the mathematical study of nonconforming rotated Q1 element (NRQ1 hereafter) on arbitrary quadrilateral meshes. Some Poincare Inequalities are proved without assuming the quasi-...This is the second part of the paper for the mathematical study of nonconforming rotated Q1 element (NRQ1 hereafter) on arbitrary quadrilateral meshes. Some Poincare Inequalities are proved without assuming the quasi-uniformity of the mesh subdivision. A discrete trace inequality is also proved.展开更多
We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interactio...We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities.展开更多
After C. Fefferman and D. H. Phong, a series of papers have been devoted to the weighted Sobolev inequality and eigenvalue estimates of the Schrdinger operator. In this note, we consider the two-weight Sobolev inequal...After C. Fefferman and D. H. Phong, a series of papers have been devoted to the weighted Sobolev inequality and eigenvalue estimates of the Schrdinger operator. In this note, we consider the two-weight Sobolev inequality and want to know under what conditions we have for 1【p【q【∞,展开更多
The Riesz–Sobolev inequality provides a sharp upper bound for a trilinear expression involving convolution of indicator functions of sets. Equality is known to hold only for indicator functions of appropriately situa...The Riesz–Sobolev inequality provides a sharp upper bound for a trilinear expression involving convolution of indicator functions of sets. Equality is known to hold only for indicator functions of appropriately situated intervals. We characterize ordered triples of subsets of R^1 that nearly realize equality, with quantitative bounds of power law form with the optimal exponent.展开更多
We consider the problem about the space embedded by the space and the embedding inequality. With the HSlder inequality and interpolation inequality, we give the proof of the space embedding theorem and the space holde...We consider the problem about the space embedded by the space and the embedding inequality. With the HSlder inequality and interpolation inequality, we give the proof of the space embedding theorem and the space holder embedding theorem.展开更多
In this paper, we prove that the supremum sup{ ∫B∫B|u(y)|p(|y|)|u(x)|p(|x|)/|x-y|μdxdy : u ∈ H0,rad1(B), ||?||uL2(B)= 1}is attained, where B denotes the unit ball in RN(N ≥3), μ ∈(0, N), p(r) ...In this paper, we prove that the supremum sup{ ∫B∫B|u(y)|p(|y|)|u(x)|p(|x|)/|x-y|μdxdy : u ∈ H0,rad1(B), ||?||uL2(B)= 1}is attained, where B denotes the unit ball in RN(N ≥3), μ ∈(0, N), p(r) = 2μ*+ rt, t ∈(0, min{N/2-μ/4, N-2}) and 2μ*=(2N-μ)/(N-2) is the critical exponent for the Hardy-Littlewood-Sobolev inequality.展开更多
基金Supported by the NSFC(11771087,12171091 and 11831005)。
文摘In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.
基金supported in part by National Natural Foundation of China (Grant Nos. 11071250 and 11271162)
文摘Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be pointed out that we con- sider whole ranges of p and q, i.e., 0 〈 p ≤∞ and 0 〈 q ≤∞.
文摘Some sufficient conditions for the F-Sobolev inequality for symmetric forms are presented in terms of new Cheeger’s constants. Meanwhile, an estimate of the F-Sobolev constants is obtained.
基金Supported by the National Natural Science Foundation of China(11871436)。
文摘Here we consider some weighted logarithmic Sobolev inequalities which can be used in the theory of singular Riemanian manifolds.We give the necessary and sufficient conditions such that the 1-dimension weighted logarithmic Sobolev inequality is true and obtain a new estimate on the entropy.
文摘The best constant of discrete Sobolev inequality on the truncated tetrahedron with a weight which describes 2 kinds of spring constants or bond distances. Main results coincides with the ones of known results by Kametaka et al. under the assumption of uniformity of the spring constants. Since the buckyball fullerene C60 has 2 kinds of edges, destruction of uniformity makes us proceed the application to the chemistry of fullerenes.
基金supported by the National Natural Science Foundation of China(No.12271163)the Science and Technology Commission of Shanghai Municipality(No.22DZ2229014)Shanghai Key Laboratory of PMMP.
文摘The authors prove a sharp logarithmic Sobolev inequality which holds for compact submanifolds without boundary in Riemannian manifolds with nonnegative sectional curvature of arbitrary dimension and codimension.Like the Michael-Simon Sobolev inequality,this inequality includes a term involving the mean curvature.This extends a recent result of Brendle with Euclidean setting.
基金the National Science Foundation of China(Grant Nos.12101380,12071269)China Postdoctoral Science Foundation(Grant No.2021M700086)Youth Innovation Team of Shaanxi Universities and the Fundamental Research Funds for the Central Universities(Grant Nos.GK202307001,GK202202007)。
文摘In this paper,we establish an improved Hardy–Littlewood–Sobolev inequality on Snunder higher-order moments constraint.Moreover,by constructing precise test functions,using improved Hardy–Littlewood–Sobolev inequality on S^(n),we show such inequality is almost optimal in critical case.As an application,we give a simpler proof of the existence of the maximizer for conformal Hardy–Littlewood–Sobolev inequality.
文摘A uniform logarithmic Sobolev inequality,a uniform Sobolev inequality and a uniformκ-noncollapsing estimate along the Ricci flow are established in the situation that a certain smallest eigenvalue for the initial metric is zero.
基金Project supported by the Yangtze Scholarship Program
文摘We establish Talagrand's T2-transportation inequalities for infinite dimensional dissipative diffusions with sharp constants, through Galerkin type's approximations and the known results in the finite dimensional case. Furthermore in the additive noise case we prove also logarithmic Sobolev inequalities with sharp constants. Applications to Reaction- Diffusion equations are provided.
基金Grants No.F1R-MTH-PUL-15CONF and No. F1R-MTH-PUL-15STAR at Luxembourg University
文摘We provide some lower bounds on the deficit in the Gaussian logarithmic Sobolev inequality in terms of the so-called Stein characterization of the Gaussian distribution.The techniques are based on the representation of the relative Fisher information along the Ornstein-Uhlenbeck semigroup by the Minimum Mean-Square Error from information theory.
基金Project supported by the National Natural Science Foundation of China (No.10271107) the 973 Project of the Ministry of Science and Technology of China (No.G1999075105) the Zhejiang Provincial Natural Science Foundation of China (No.RC97017).
文摘Let M be an n dimensional complete Riemannian manifold satisfying the doublingvolume property and an on-diagonal heat kernel estimate. The necessary-sufficientcondition for the Sobolev inequality ‖f‖q ≤ Cn,,v,p,q(‖▽f‖p+‖fp) (2≤p<q<∞) is given.
文摘In this paper the author proves the equivalence of hypercontractivity and logarithmic Sobolev inequality for q-Ornstein-Uhlenbeck semigroup Ut(q)=Γq(e-tI)(-1≤q≤1),whereΓq is a q-Gaussian functor.
文摘Some estimates of logarithmic Sobolev constant for general symmetric forms are obtained in terms of new Cheeger’s constants. The estimates can be sharp in some sense.
基金The work of P.-B.Ming was partially supported by the National Natural Science Foundation of China 10201033
文摘This is the second part of the paper for the mathematical study of nonconforming rotated Q1 element (NRQ1 hereafter) on arbitrary quadrilateral meshes. Some Poincare Inequalities are proved without assuming the quasi-uniformity of the mesh subdivision. A discrete trace inequality is also proved.
文摘We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities.
基金Project supported by the National Natural Science Foundation of China
文摘After C. Fefferman and D. H. Phong, a series of papers have been devoted to the weighted Sobolev inequality and eigenvalue estimates of the Schrdinger operator. In this note, we consider the two-weight Sobolev inequality and want to know under what conditions we have for 1【p【q【∞,
基金Research supported in part by NSF(Grants DMS-0901569 and DMS-1363324)
文摘The Riesz–Sobolev inequality provides a sharp upper bound for a trilinear expression involving convolution of indicator functions of sets. Equality is known to hold only for indicator functions of appropriately situated intervals. We characterize ordered triples of subsets of R^1 that nearly realize equality, with quantitative bounds of power law form with the optimal exponent.
基金Supported by Soft Science Project of Henan Province(072102210020)
文摘We consider the problem about the space embedded by the space and the embedding inequality. With the HSlder inequality and interpolation inequality, we give the proof of the space embedding theorem and the space holder embedding theorem.
基金supported by National Natural Science Foundation of China(Grant Nos.11831009 and 11571130)
文摘In this paper, we prove that the supremum sup{ ∫B∫B|u(y)|p(|y|)|u(x)|p(|x|)/|x-y|μdxdy : u ∈ H0,rad1(B), ||?||uL2(B)= 1}is attained, where B denotes the unit ball in RN(N ≥3), μ ∈(0, N), p(r) = 2μ*+ rt, t ∈(0, min{N/2-μ/4, N-2}) and 2μ*=(2N-μ)/(N-2) is the critical exponent for the Hardy-Littlewood-Sobolev inequality.