An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the ped...An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the pedestrians,which may further alter their behavioral patterns.This effect is especially significant in narrow spaces,such as corridors and alleys.This study aims to integrate a non-spreading hazard source into the social force model following the results from a previous experiment and simulation,and to simulate unidirectional pedestrian flows over various crowd densities and clarity–intensity properties of the hazard source.The integration include a virtual repulsion force from the hazard source and a decay on the social force term.The simulations reveal(i)that the hazard source creates virtual bottlenecks that suppress the flow,(ii)that the inter-pedestrian push forms a stabilisation phase on the flow-density curve within medium-to-high densities,and(iii)that the pedestrians are prone to a less orderly and stable pattern of movement in low clarity–intensity scenarios,possibly with lateral collisions passing the hazard source.展开更多
The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation mo...The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation model is explored in this work by combining the improved social force model with the view radius using the Vicsek model. The pedestrians are divided into two categories based on different force models. The first category is sensitive pedestrians who have normal responses to emergency signs. The second category is insensitive pedestrians. By simulating different proportions of the insensitive pedestrians, we find that the escape time is directly proportional to the number of insensitive pedestrians and inversely proportional to the view radius. However, when the view radius is large enough, the escape time does not change significantly, and the evacuation of people in a small view radius environment tends to be integrated. With the improvement of view radius conditions, the escape time changes more obviously with the proportion of insensitive pedestrians. A new emergency sign layout is proposed, and the simulations show that the proposed layout can effectively reduce the escape time in a small view radius environment. However, the evacuation effect of the new escape sign layout on the large view radius environment is not apparent. In this case, the exit setting emerges as an additional factor affecting the escape time.展开更多
In the process of crowd movement,pedestrians are often affected by their neighbors.In order to describe the consistency of adjacent individuals and collectivity of a group,this paper learns from the rules of the flock...In the process of crowd movement,pedestrians are often affected by their neighbors.In order to describe the consistency of adjacent individuals and collectivity of a group,this paper learns from the rules of the flocking behavior,such as segregation,alignment and cohesion,and proposes a method for crowd motion simulation based on the Boids model and social force model.Firstly,the perception area of individuals is divided into zone of segregation,alignment and cohesion.Secondly,the interactive force among individuals is calculated based upon the zone information,velocity vector and the group information.The interactive force among individuals is the synthesis of three forces:the repulsion force to avoid collisions,the alignment force to keep consistent with the velocity direction,and the attractive force to get close to the members of group.In segregation and alignment areas,the repulsion force and alignment force among pedestrians are limited by visual field factors.Finally,the interactive force among individuals,the driving force of destination and the repulsion force of obstacles work together to drive the behavior of crowd motion.The simulation results show that the proposed method can not only effectively simulate the interactive behavior between adjacent individuals but also the collective behavior of group.展开更多
An extended social force model with a dynamic navigation field is proposed to study bidirectional pedestrian movement. The dynamic navigation field is introduced to describe the desired direction of pedestrian motion ...An extended social force model with a dynamic navigation field is proposed to study bidirectional pedestrian movement. The dynamic navigation field is introduced to describe the desired direction of pedestrian motion resulting from the decision-making processes of pedestrians. The macroscopic fundamental diagrams obtained using the extended model are validated against camera-based observations. Numerical results show that this extended model can reproduce collective phenomena in pedestrian traffic, such as dynamic multilane flow and stable separate-lane flow. Pedestrians' path choice behavior significantly affects the probability of congestion and the number of self-organized lanes.展开更多
Crowd evacuation simulation using virtual reality(VR)is significant for digital emergency response construction.However,existing evacuation simulation studies suffer from poor adaptation to complex environments,ineffi...Crowd evacuation simulation using virtual reality(VR)is significant for digital emergency response construction.However,existing evacuation simulation studies suffer from poor adaptation to complex environments,inefficient evacuations,and poor simulation effects and do not fully consider the impacts of specific disaster environments on crowd evacuation.To more realistically express the crowd evacuation results obtained under the influence offire environments and the subjective consciousness of pedestrians in subway stations,we designed a dynamic pedestrian evacuation path planning method under multiple constraints,analysed the influences of an‘environmental role’and a‘subjective initiative’on crowd evacuation,established an improved social force model(ISFM)-based crowd evacuation simulation method in VR,developed a prototype system and conducted experimental analyses.The experimental results show that the crowd evacuation time of the ISFM is affected by the disaster severity.In simulation experiments without disaster scenarios,the improved model’s crowd evacuation efficiency improved by averages of 12.53%and 15.37%over the commercial Pathfinder software and the original social force model,respectively.The method described herein can effectively support real-time VR crowd evacuation simulation under multiexit and multifloor conditions and can provide technical support for emergency evacuation learning and management decision analyses involving subwayfires.展开更多
In this paper, an extended social force model was applied to investigate fundamental diagrams of pedestrian flows. In the presented model, both the static floor field and the view field were taken into account. Then e...In this paper, an extended social force model was applied to investigate fundamental diagrams of pedestrian flows. In the presented model, both the static floor field and the view field were taken into account. Then each pedestrian can determine his/her desired walking directions according to both global and local information. The fundamental diagrams were obtained numerically under periodic boundary condition. It was found that the fundamental diagrams show good agreement with the measured data in the case of unidirectional flow, especially in the medium density range. However, the fundamental diagram for the case of bidirectional flow gave larger values than the measured data. Furthermore, the bidirectional flux is larger than the tmidirectional flux in a certain density range. It is indicated that the bidirectional flow may be more efficient than the unidirectional flow in some cases. The process of lane formation is quite quick in the model. Typical flow patterns in three scenarios were given to show some realistic applications.展开更多
With the increase in large-scale incidents in real life, crowd evacuation plays a pivotal role in ensuring the safety of human crowds during emergency situations. The behavior patterns of crowds are well rendered by e...With the increase in large-scale incidents in real life, crowd evacuation plays a pivotal role in ensuring the safety of human crowds during emergency situations. The behavior patterns of crowds are well rendered by existing crowd dynamics models. However, most related studies ignore the information perception of pedestrians.To overcome this issue, we develop a visual information based social force model to simulate the interpretable evacuation process from the perspective of visual perception. Numerical experiments indicate that the evacuation efficiency and decision-making ability promote rapidly within a small range with the increase in unbalanced prior knowledge. The propagation of acceleration behavior caused by emergencies is asymmetric due to the anisotropy of visual information. Therefore, this model effectively characterizes the effect of visual information on crowd evacuation and provides new insights into the information perception of individuals in complex scenarios.展开更多
The pedestrians can only avoid collisions passively under the action of forces during simulations using the social force model, which may lead to unnatural behaviors. This paper proposes an optimization-based model fo...The pedestrians can only avoid collisions passively under the action of forces during simulations using the social force model, which may lead to unnatural behaviors. This paper proposes an optimization-based model for the avoidance of collisions, where the social repulsive force is removed in favor of a search for the quickest path to destination in the pedestrian's vision field. In this way, the behaviors of pedestrians are governed by changing their desired walking direction and desired speed. By combining the critical factors of pedestrian movement, such as positions of the exit and obstacles and velocities of the neighbors, the choice of desired velocity has been rendered to a discrete optimization problem. Therefore,it is the self-driven force that leads pedestrians to a free path rather than the repulsive force, which means the pedestrians can actively avoid collisions. The new model is verified by comparing with the fundamental diagram and actual data. The simulation results of individual avoidance trajectories and crowd avoidance behaviors demonstrate the reasonability of the proposed model.展开更多
Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians pass...Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians passing through the crosswalk at signalized intersection were analyzed.A pedestrian's decision making model based on gap acceptance theory was proposed.Based on the field data at three typical intersections in Beijing,China,the critical gaps and lags of pedestrians were calibrated.In addition,considering pedestrian's required space,a modification of the social force model that consists of a self-deceleration mechanism prevents a simulated pedestrian from continuously pushing over other pedestrians,making the simulation more realistic.After the simple change,the modified social force model is able to reproduce the fundamental diagram of pedestrian flows for densities less than 3.5 m-2 as reported in the literature.展开更多
In this paper, the evacuation dynamics in an artificial room with only one exit is investigated via experiments and modeling. Two sets of experiments are implemented, in which pedestrians are asked to escape individua...In this paper, the evacuation dynamics in an artificial room with only one exit is investigated via experiments and modeling. Two sets of experiments are implemented, in which pedestrians are asked to escape individually. It is found that the average evacuation time gap is essentially constant. To model the evacuation dynamics, an improved social force model is proposed, in which it is assumed that the driving force of a pedestrian cannot be performed when the resultant physical force exceeds a threshold. Simulation results are in good agreement with the experimental ones.展开更多
With the development of urban rail transit, ensuring the safe evacuation of pedestrians at subway stations has become an important issue in the case of an emergency such as a fire. This paper chooses the platform of l...With the development of urban rail transit, ensuring the safe evacuation of pedestrians at subway stations has become an important issue in the case of an emergency such as a fire. This paper chooses the platform of line 4 at the Beijing Xu- anwumen subway station to study the emergency evacuation process under fire. Based on the established platform, effects of the fire dynamics, different initial pedestrian densities, and positions of fire on evacuation are investigated. According to simulation results, it is found that the fire increases the air temperature and the smoke density, and decreases pedestrians'- visibility and walking velocity. Also, there is a critical initial density at the platform if achieving a safe evacuation within the required 6 minutes. Furthermore, different positions of fire set in this paper have little difference on crowd evacuation if the fire is not large enough. The suggestions provided in this paper are helpful for the subway operators to prevent major casualties.展开更多
This paper presents a model for simulating crowd evacuation and investigates three widely recognized problems. For the space continuity problem, this paper presents two computation algorithms: one uses grid space to ...This paper presents a model for simulating crowd evacuation and investigates three widely recognized problems. For the space continuity problem, this paper presents two computation algorithms: one uses grid space to evaluate the coordinates of the obstacle's bounding box and the other employs the geometry rule to establish individual evacuation routes. For the problem of collision, avoidance, and excess among the individuals, this paper computes the generalized force and friction force and then modifies the direction of march to obtain a speed model based on the crowd density and real time speed. For the exit selection problem, this paper establishes a method of selecting the exits by combining the exit's crowd state with the individuals. Finally, a particle system is used to simulate the behavior of crowd evacuation and produces useful test results.展开更多
The bottleneck effect on bidirectional crowd dynamics is of great theoretical and practical significance, especially for the designing of corridors in public places, such as subway stations or airports. Based on the f...The bottleneck effect on bidirectional crowd dynamics is of great theoretical and practical significance, especially for the designing of corridors in public places, such as subway stations or airports. Based on the famous social force model, this paper investigates the bottleneck effects on the free flow dynamics and breakdown phenomenon under different scenarios, in which different corridor shapes and inflow ratios are considered simultaneously. Numerical simulation finds an interesting self-organization phenomenon in the bidirectional flow, a typical characteristic of such a phenomenon is called lane formation, and the existence of which is independent of the corridor's shape and inflow rate. However, the pattern of the lane formed by pedestrian flow is related to the corridor's shape, and the free flow efficiency has close relationship with the inflow rate. Specifically, breakdown phenomenon occurs when inflows from both sides of the corridor are large enough, which mostly originates from the bottleneck and then gradually spreads to the other regions. Simulation results further indicate that the leaving efficiency becomes low as breakdown occurs, and the degree of congestion is proportional to the magnitude of inflow. The findings presented in this paper match well with some of our daily observations, hence it is possible to use them to provide us with theoretical suggestions in design of infrastructures.展开更多
Under the background of Covid-19 sweeping the world,safe and reasonable passenger flow management strategy in subway stations is an effective means to prevent the spread of virus.Based on the social force model and th...Under the background of Covid-19 sweeping the world,safe and reasonable passenger flow management strategy in subway stations is an effective means to prevent the spread of virus.Based on the social force model and the minimum cost model,the movement and path selection behavior of passengers in the subway station are modeled,and a strategy for passenger flow management to maintain a safe social distance is put forward.Take Qingdao Jinggangshan Road subway station of China as the simulation scene,the validity of the simulation model is verified by comparing the measured value and simulation value of the time required for passengers from getting off the train to the ticket gate.Simulation results indicate that controlling the time interval between incoming passengers at the entrance can effectively control the social distance between passengers and reduce the risk of epidemic infection.By comparing the evacuation process of passengers under different initial densities,it is found that the greater the initial density of passengers is,the longer the passengers are at risk social distance.In the process of passenger emergency evacuation,the stairs/escalators and ticket gates are bottleneck areas with high concentration of passenger density,which should be strictly disinfected many times on the basis of strictly checking the health code of incoming passengers and controlling the arrival time interval.The simulation results of this paper verify the harmfulness of passenger emergency evacuation without protective measures,and provide theoretical support for the operation and management of subway station under the epidemic situation.展开更多
This paper focuses on the simulation analysis of stripe formation and dynamic features of intersecting pedestrian flows.The intersecting flows consist of two streams of pedestrians and each pedestrian stream has a des...This paper focuses on the simulation analysis of stripe formation and dynamic features of intersecting pedestrian flows.The intersecting flows consist of two streams of pedestrians and each pedestrian stream has a desired walking direction.The model adopted in the simulations is the social force model, which can reproduce the self-organization phenomena successfully. Three scenarios of different cross angles are established. The simulations confirm the empirical observations that there is a stripe formation when two streams of pedestrians intersect and the direction of the stripes is perpendicular to the sum of the directional vectors of the two streams. It can be concluded from the numerical simulation results that smaller cross angle results in higher mean speed and lower level of speed fluctuation. Moreover, the detailed pictures of pedestrians' moving behavior at intersections are given as well.展开更多
Analysis of dynamic features of pedestrian flows is one of the most exciting topics in pedestrian dynamics. This paper focuses on the effect of homogeneity and heterogeneity in three parameters of the social force mod...Analysis of dynamic features of pedestrian flows is one of the most exciting topics in pedestrian dynamics. This paper focuses on the effect of homogeneity and heterogeneity in three parameters of the social force model, namely desired velocity, reaction time, and body size, on the moving dynamics of bidirectional pedestrian flows in the corridors. The speed and its deviation in free flows are investigated. Simulation results show that the homogeneous higher desired speed which is less than a critical threshold, shorter reaction time or smaller body size results in higher speed of flows. The free dynamics is more sensitive to the heterogeneity in desired speed than that in reaction time or in body size. In particular, an inner lane formation is observed in normal lanes. Furthermore, the breakdown probability and the start time of breakdown are focused on. This study reveals that the sizes of homogeneous desired speed, reaction time or body size play more important roles in affecting the breakdown than the heterogeneities in these three parameters do.展开更多
Spatial memory is a critical navigation support tool for disoriented evacuees during evacuation under adverse environ-mental conditions such as dark or smoky conditions. Owing to the complexity of memory, it is challe...Spatial memory is a critical navigation support tool for disoriented evacuees during evacuation under adverse environ-mental conditions such as dark or smoky conditions. Owing to the complexity of memory, it is challenging to understand the effect of spatial memory on pedestrian evacuation quantitatively. In this study, we propose a simple method to quan- titatively represent the evacuee's spatial memory about the emergency exit, model the evacuation of pedestrians under the guidance of the spatial memory, and investigate the effect of the evacuee's spatial memory on the evacuation from theoretical and physical perspectives. The result shows that (i) a good memory can significantly assist the evacuation of pedestrians under poor visibility conditions, and the evacuation can always succeed when the degree of the memory exceeds a threshold (φ〉 0.5); (ii) the effect of memory is superior to that of "follow-the-crowd" under the same environmental conditions; (iii) in the case of multiple exits, the difference in the degree of the memory between evacuees has a significant effect (the greater the difference, the faster the evacuation) for the evacuation under poor visibility conditions. Our study provides a new quantitative insight into the effect of spatial memory on crowd evacuation under poor visibility conditions.展开更多
Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challenging problem for mobile robots inspecting hazardous gases.Consideration of personal space is important,especi...Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challenging problem for mobile robots inspecting hazardous gases.Consideration of personal space is important,especially in a relatively narrow man–machine dynamic environments such as warehouses and laboratories.In this study,human and robot behaviors in man–machine environments are analyzed,and a man–machine social force model is established to study the robot obstacle avoidance speed.Four typical man–machine behavior patterns are investigated to design the robot behavior strategy.Based on the social force model and man–machine behavior patterns,the fuzzy-PID trajectory tracking control method and the autonomous obstacle avoidance behavior strategy of the mobile robot in inspecting hazardous gases in a relatively narrow man–machine dynamic environment are proposed to determine the optimal robot speed for obstacle avoidance.The simulation analysis results show that compared with the traditional PID control method,the proposed controller has a position error of less than 0.098 m,an angle error of less than 0.088 rad,a smaller steady-state error,and a shorter convergence time.The crossing and encountering pattern experiment results show that the proposed behavior strategy ensures that the robot maintains a safe distance from humans while performing trajectory tracking.This research proposes a combination autonomous behavior strategy for mobile robots inspecting hazardous gases,ensuring that the robot maintains the optimal speed to achieve dynamic obstacle avoidance,reducing human anxiety and increasing comfort in a relatively narrow man–machine environment.展开更多
A new force is introduced in the social force model (SFM) for computing following behavior in pedestrian counterflow, whereby an individual tries to approach others in the same direction to avoid conflicts with pede...A new force is introduced in the social force model (SFM) for computing following behavior in pedestrian counterflow, whereby an individual tries to approach others in the same direction to avoid conflicts with pedestrians from the opposite direction. The force, like a kind of gravitation, is modeled based on the movement state and visual field of the pedestrian, and is added to the classical SFM. The modified model is presented to study the impact of following behavior on the process of lane formation, the conflict, the number of lanes formed, and the traffic efficiency in the simulations. Simulation results show that the following behavior has a significant effect on the phenomenon of lane formation and the traffic efficiency.展开更多
We present a derived grid-based model for the simulation of pedestrian flow. Interactions among pedestrians are considered as the result of forces within a certain neighbourhood. Unlike the social force model,the forc...We present a derived grid-based model for the simulation of pedestrian flow. Interactions among pedestrians are considered as the result of forces within a certain neighbourhood. Unlike the social force model,the forces here,as in Newtonian physics,are proportional to the inverse of the square of the distance. Despite the notion of neighbourhood and the underlying grid,this model differs from the existing cellular automaton(CA) models in that the pedestrians are treated as individuals. Bresenham's algorithm for line rastering is applied in the step calculation.展开更多
基金Project supported by National Key Research and Development Program of China(Grant Nos.2022YFC3320800 and 2021YFC1523500)the National Natural Science Foundation of China(Grant Nos.71971126,71673163,72304165,72204136,and 72104123).
文摘An accurate assessment of the evacuation efficiency in case of disasters is of vital importance to the safety design of buildings and street blocks.Hazard sources not only physically but psychologically affect the pedestrians,which may further alter their behavioral patterns.This effect is especially significant in narrow spaces,such as corridors and alleys.This study aims to integrate a non-spreading hazard source into the social force model following the results from a previous experiment and simulation,and to simulate unidirectional pedestrian flows over various crowd densities and clarity–intensity properties of the hazard source.The integration include a virtual repulsion force from the hazard source and a decay on the social force term.The simulations reveal(i)that the hazard source creates virtual bottlenecks that suppress the flow,(ii)that the inter-pedestrian push forms a stabilisation phase on the flow-density curve within medium-to-high densities,and(iii)that the pedestrians are prone to a less orderly and stable pattern of movement in low clarity–intensity scenarios,possibly with lateral collisions passing the hazard source.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51874183 and 51874182)the National Key Research and Development Program of China (Grant No. 2018YFC0809300)。
文摘The subway is the primary travel tool for urban residents in China. Due to the complex structure of the subway and high personnel density in rush hours, subway evacuation capacity is critical. The subway evacuation model is explored in this work by combining the improved social force model with the view radius using the Vicsek model. The pedestrians are divided into two categories based on different force models. The first category is sensitive pedestrians who have normal responses to emergency signs. The second category is insensitive pedestrians. By simulating different proportions of the insensitive pedestrians, we find that the escape time is directly proportional to the number of insensitive pedestrians and inversely proportional to the view radius. However, when the view radius is large enough, the escape time does not change significantly, and the evacuation of people in a small view radius environment tends to be integrated. With the improvement of view radius conditions, the escape time changes more obviously with the proportion of insensitive pedestrians. A new emergency sign layout is proposed, and the simulations show that the proposed layout can effectively reduce the escape time in a small view radius environment. However, the evacuation effect of the new escape sign layout on the large view radius environment is not apparent. In this case, the exit setting emerges as an additional factor affecting the escape time.
文摘In the process of crowd movement,pedestrians are often affected by their neighbors.In order to describe the consistency of adjacent individuals and collectivity of a group,this paper learns from the rules of the flocking behavior,such as segregation,alignment and cohesion,and proposes a method for crowd motion simulation based on the Boids model and social force model.Firstly,the perception area of individuals is divided into zone of segregation,alignment and cohesion.Secondly,the interactive force among individuals is calculated based upon the zone information,velocity vector and the group information.The interactive force among individuals is the synthesis of three forces:the repulsion force to avoid collisions,the alignment force to keep consistent with the velocity direction,and the attractive force to get close to the members of group.In segregation and alignment areas,the repulsion force and alignment force among pedestrians are limited by visual field factors.Finally,the interactive force among individuals,the driving force of destination and the repulsion force of obstacles work together to drive the behavior of crowd motion.The simulation results show that the proposed method can not only effectively simulate the interactive behavior between adjacent individuals but also the collective behavior of group.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 11202175, 11275186, 91024026, and FOM2014OF001), the Research Foundation of Southwest University of Science and Technology (No. 10zx7137), and a Singapore Ministry of Education Research Grant (Grant No. MOE 2013-T2-2-033).
文摘An extended social force model with a dynamic navigation field is proposed to study bidirectional pedestrian movement. The dynamic navigation field is introduced to describe the desired direction of pedestrian motion resulting from the decision-making processes of pedestrians. The macroscopic fundamental diagrams obtained using the extended model are validated against camera-based observations. Numerical results show that this extended model can reproduce collective phenomena in pedestrian traffic, such as dynamic multilane flow and stable separate-lane flow. Pedestrians' path choice behavior significantly affects the probability of congestion and the number of self-organized lanes.
基金supported by the National Natural Science Foundation of China[grant no 42271424,42171397]Sichuan Transportation Science and Technology Program[grant no 2021-B-02]Chengdu Science and Technology Program[grant no 2021XT00001GX].
文摘Crowd evacuation simulation using virtual reality(VR)is significant for digital emergency response construction.However,existing evacuation simulation studies suffer from poor adaptation to complex environments,inefficient evacuations,and poor simulation effects and do not fully consider the impacts of specific disaster environments on crowd evacuation.To more realistically express the crowd evacuation results obtained under the influence offire environments and the subjective consciousness of pedestrians in subway stations,we designed a dynamic pedestrian evacuation path planning method under multiple constraints,analysed the influences of an‘environmental role’and a‘subjective initiative’on crowd evacuation,established an improved social force model(ISFM)-based crowd evacuation simulation method in VR,developed a prototype system and conducted experimental analyses.The experimental results show that the crowd evacuation time of the ISFM is affected by the disaster severity.In simulation experiments without disaster scenarios,the improved model’s crowd evacuation efficiency improved by averages of 12.53%and 15.37%over the commercial Pathfinder software and the original social force model,respectively.The method described herein can effectively support real-time VR crowd evacuation simulation under multiexit and multifloor conditions and can provide technical support for emergency evacuation learning and management decision analyses involving subwayfires.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572184,11562020 and 11172164)the National Basic Research Development Program of China(973 Program,Grant No.2012CB725404)
文摘In this paper, an extended social force model was applied to investigate fundamental diagrams of pedestrian flows. In the presented model, both the static floor field and the view field were taken into account. Then each pedestrian can determine his/her desired walking directions according to both global and local information. The fundamental diagrams were obtained numerically under periodic boundary condition. It was found that the fundamental diagrams show good agreement with the measured data in the case of unidirectional flow, especially in the medium density range. However, the fundamental diagram for the case of bidirectional flow gave larger values than the measured data. Furthermore, the bidirectional flux is larger than the tmidirectional flux in a certain density range. It is indicated that the bidirectional flow may be more efficient than the unidirectional flow in some cases. The process of lane formation is quite quick in the model. Typical flow patterns in three scenarios were given to show some realistic applications.
基金supported by the National Key Research and Development Program of China (No. 2020YFF0304900)the National Major Scientific Research Instrument Development Project of China (No. 61927804)。
文摘With the increase in large-scale incidents in real life, crowd evacuation plays a pivotal role in ensuring the safety of human crowds during emergency situations. The behavior patterns of crowds are well rendered by existing crowd dynamics models. However, most related studies ignore the information perception of pedestrians.To overcome this issue, we develop a visual information based social force model to simulate the interpretable evacuation process from the perspective of visual perception. Numerical experiments indicate that the evacuation efficiency and decision-making ability promote rapidly within a small range with the increase in unbalanced prior knowledge. The propagation of acceleration behavior caused by emergencies is asymmetric due to the anisotropy of visual information. Therefore, this model effectively characterizes the effect of visual information on crowd evacuation and provides new insights into the information perception of individuals in complex scenarios.
基金supported by the National Natural Science Foundation of China(Grant Nos.61233001 and 61322307)the Fundamental Research Funds for Central Universities of China(Grant No.2013JBZ007)
文摘The pedestrians can only avoid collisions passively under the action of forces during simulations using the social force model, which may lead to unnatural behaviors. This paper proposes an optimization-based model for the avoidance of collisions, where the social repulsive force is removed in favor of a search for the quickest path to destination in the pedestrian's vision field. In this way, the behaviors of pedestrians are governed by changing their desired walking direction and desired speed. By combining the critical factors of pedestrian movement, such as positions of the exit and obstacles and velocities of the neighbors, the choice of desired velocity has been rendered to a discrete optimization problem. Therefore,it is the self-driven force that leads pedestrians to a free path rather than the repulsive force, which means the pedestrians can actively avoid collisions. The new model is verified by comparing with the fundamental diagram and actual data. The simulation results of individual avoidance trajectories and crowd avoidance behaviors demonstrate the reasonability of the proposed model.
基金Project(70972041)supported by the National Natural Science Foundation of ChinaProject(20100009110010)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(2011YJS246)supported by Fundamental Research Funds for the Central Universities of China
文摘Pedestrian's road-crossing model is the key part of micro-simulation for mixed traffic at signalized intersection.To reproduce the crossing behavior of pedestrians,the microscopic behaviors of the pedestrians passing through the crosswalk at signalized intersection were analyzed.A pedestrian's decision making model based on gap acceptance theory was proposed.Based on the field data at three typical intersections in Beijing,China,the critical gaps and lags of pedestrians were calibrated.In addition,considering pedestrian's required space,a modification of the social force model that consists of a self-deceleration mechanism prevents a simulated pedestrian from continuously pushing over other pedestrians,making the simulation more realistic.After the simple change,the modified social force model is able to reproduce the fundamental diagram of pedestrian flows for densities less than 3.5 m-2 as reported in the literature.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11422221,11672289,71371175,and 71431003)
文摘In this paper, the evacuation dynamics in an artificial room with only one exit is investigated via experiments and modeling. Two sets of experiments are implemented, in which pedestrians are asked to escape individually. It is found that the average evacuation time gap is essentially constant. To model the evacuation dynamics, an improved social force model is proposed, in which it is assumed that the driving force of a pedestrian cannot be performed when the resultant physical force exceeds a threshold. Simulation results are in good agreement with the experimental ones.
基金supported by the National Natural Science Foundation of China(Grant Nos.61322307 and 61233001)
文摘With the development of urban rail transit, ensuring the safe evacuation of pedestrians at subway stations has become an important issue in the case of an emergency such as a fire. This paper chooses the platform of line 4 at the Beijing Xu- anwumen subway station to study the emergency evacuation process under fire. Based on the established platform, effects of the fire dynamics, different initial pedestrian densities, and positions of fire on evacuation are investigated. According to simulation results, it is found that the fire increases the air temperature and the smoke density, and decreases pedestrians'- visibility and walking velocity. Also, there is a critical initial density at the platform if achieving a safe evacuation within the required 6 minutes. Furthermore, different positions of fire set in this paper have little difference on crowd evacuation if the fire is not large enough. The suggestions provided in this paper are helpful for the subway operators to prevent major casualties.
基金supported by Shanghai Science and Technology Committee (No. 08515810200)Jiangsu Province Development Foundation (No. BS2007048)
文摘This paper presents a model for simulating crowd evacuation and investigates three widely recognized problems. For the space continuity problem, this paper presents two computation algorithms: one uses grid space to evaluate the coordinates of the obstacle's bounding box and the other employs the geometry rule to establish individual evacuation routes. For the problem of collision, avoidance, and excess among the individuals, this paper computes the generalized force and friction force and then modifies the direction of march to obtain a speed model based on the crowd density and real time speed. For the exit selection problem, this paper establishes a method of selecting the exits by combining the exit's crowd state with the individuals. Finally, a particle system is used to simulate the behavior of crowd evacuation and produces useful test results.
基金Project supported jointly by the National Natural Science Foundation of China(Grant Nos.61322307 and 2016YJS023)
文摘The bottleneck effect on bidirectional crowd dynamics is of great theoretical and practical significance, especially for the designing of corridors in public places, such as subway stations or airports. Based on the famous social force model, this paper investigates the bottleneck effects on the free flow dynamics and breakdown phenomenon under different scenarios, in which different corridor shapes and inflow ratios are considered simultaneously. Numerical simulation finds an interesting self-organization phenomenon in the bidirectional flow, a typical characteristic of such a phenomenon is called lane formation, and the existence of which is independent of the corridor's shape and inflow rate. However, the pattern of the lane formed by pedestrian flow is related to the corridor's shape, and the free flow efficiency has close relationship with the inflow rate. Specifically, breakdown phenomenon occurs when inflows from both sides of the corridor are large enough, which mostly originates from the bottleneck and then gradually spreads to the other regions. Simulation results further indicate that the leaving efficiency becomes low as breakdown occurs, and the degree of congestion is proportional to the magnitude of inflow. The findings presented in this paper match well with some of our daily observations, hence it is possible to use them to provide us with theoretical suggestions in design of infrastructures.
基金the National Natural Science Foundation of China(Grant No.62003182)。
文摘Under the background of Covid-19 sweeping the world,safe and reasonable passenger flow management strategy in subway stations is an effective means to prevent the spread of virus.Based on the social force model and the minimum cost model,the movement and path selection behavior of passengers in the subway station are modeled,and a strategy for passenger flow management to maintain a safe social distance is put forward.Take Qingdao Jinggangshan Road subway station of China as the simulation scene,the validity of the simulation model is verified by comparing the measured value and simulation value of the time required for passengers from getting off the train to the ticket gate.Simulation results indicate that controlling the time interval between incoming passengers at the entrance can effectively control the social distance between passengers and reduce the risk of epidemic infection.By comparing the evacuation process of passengers under different initial densities,it is found that the greater the initial density of passengers is,the longer the passengers are at risk social distance.In the process of passenger emergency evacuation,the stairs/escalators and ticket gates are bottleneck areas with high concentration of passenger density,which should be strictly disinfected many times on the basis of strictly checking the health code of incoming passengers and controlling the arrival time interval.The simulation results of this paper verify the harmfulness of passenger emergency evacuation without protective measures,and provide theoretical support for the operation and management of subway station under the epidemic situation.
基金Project supported by the National Natural Science Foundation of China(Grant No.61233001)the Fundamental Research Funds for the Central Universities,China(Grant No.2017JBM014)
文摘This paper focuses on the simulation analysis of stripe formation and dynamic features of intersecting pedestrian flows.The intersecting flows consist of two streams of pedestrians and each pedestrian stream has a desired walking direction.The model adopted in the simulations is the social force model, which can reproduce the self-organization phenomena successfully. Three scenarios of different cross angles are established. The simulations confirm the empirical observations that there is a stripe formation when two streams of pedestrians intersect and the direction of the stripes is perpendicular to the sum of the directional vectors of the two streams. It can be concluded from the numerical simulation results that smaller cross angle results in higher mean speed and lower level of speed fluctuation. Moreover, the detailed pictures of pedestrians' moving behavior at intersections are given as well.
基金Project supported jointly by the National Natural Science Foundation of China(Grant No.61233001)the Fundamental Research Funds for Central Universities of China(Grant No.2013JBZ007)
文摘Analysis of dynamic features of pedestrian flows is one of the most exciting topics in pedestrian dynamics. This paper focuses on the effect of homogeneity and heterogeneity in three parameters of the social force model, namely desired velocity, reaction time, and body size, on the moving dynamics of bidirectional pedestrian flows in the corridors. The speed and its deviation in free flows are investigated. Simulation results show that the homogeneous higher desired speed which is less than a critical threshold, shorter reaction time or smaller body size results in higher speed of flows. The free dynamics is more sensitive to the heterogeneity in desired speed than that in reaction time or in body size. In particular, an inner lane formation is observed in normal lanes. Furthermore, the breakdown probability and the start time of breakdown are focused on. This study reveals that the sizes of homogeneous desired speed, reaction time or body size play more important roles in affecting the breakdown than the heterogeneities in these three parameters do.
基金Project supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(Grant No.11203615)
文摘Spatial memory is a critical navigation support tool for disoriented evacuees during evacuation under adverse environ-mental conditions such as dark or smoky conditions. Owing to the complexity of memory, it is challenging to understand the effect of spatial memory on pedestrian evacuation quantitatively. In this study, we propose a simple method to quan- titatively represent the evacuee's spatial memory about the emergency exit, model the evacuation of pedestrians under the guidance of the spatial memory, and investigate the effect of the evacuee's spatial memory on the evacuation from theoretical and physical perspectives. The result shows that (i) a good memory can significantly assist the evacuation of pedestrians under poor visibility conditions, and the evacuation can always succeed when the degree of the memory exceeds a threshold (φ〉 0.5); (ii) the effect of memory is superior to that of "follow-the-crowd" under the same environmental conditions; (iii) in the case of multiple exits, the difference in the degree of the memory between evacuees has a significant effect (the greater the difference, the faster the evacuation) for the evacuation under poor visibility conditions. Our study provides a new quantitative insight into the effect of spatial memory on crowd evacuation under poor visibility conditions.
基金Research and Development Program of Xi’an Modern Chemistry Research Institute of Chnia(Grant No.204J201916234/6)Key Project of Liuzhou Science and Technology Bureau of China(Grant No.2020PAAA0601).
文摘Selecting the optimal speed for dynamic obstacle avoidance in complex man–machine environments is a challenging problem for mobile robots inspecting hazardous gases.Consideration of personal space is important,especially in a relatively narrow man–machine dynamic environments such as warehouses and laboratories.In this study,human and robot behaviors in man–machine environments are analyzed,and a man–machine social force model is established to study the robot obstacle avoidance speed.Four typical man–machine behavior patterns are investigated to design the robot behavior strategy.Based on the social force model and man–machine behavior patterns,the fuzzy-PID trajectory tracking control method and the autonomous obstacle avoidance behavior strategy of the mobile robot in inspecting hazardous gases in a relatively narrow man–machine dynamic environment are proposed to determine the optimal robot speed for obstacle avoidance.The simulation analysis results show that compared with the traditional PID control method,the proposed controller has a position error of less than 0.098 m,an angle error of less than 0.088 rad,a smaller steady-state error,and a shorter convergence time.The crossing and encountering pattern experiment results show that the proposed behavior strategy ensures that the robot maintains a safe distance from humans while performing trajectory tracking.This research proposes a combination autonomous behavior strategy for mobile robots inspecting hazardous gases,ensuring that the robot maintains the optimal speed to achieve dynamic obstacle avoidance,reducing human anxiety and increasing comfort in a relatively narrow man–machine environment.
基金Project supported by the National Natural Science Foundation of China (Nos. 51278221 and 51378076), the Chinese Postdoc- toral Science Foundation (Nos. 2015M571369 and 2012M511343), and Jilin Science and Technology Development Program, China (Nos. 20140204027SF and 20170101155JC)
文摘A new force is introduced in the social force model (SFM) for computing following behavior in pedestrian counterflow, whereby an individual tries to approach others in the same direction to avoid conflicts with pedestrians from the opposite direction. The force, like a kind of gravitation, is modeled based on the movement state and visual field of the pedestrian, and is added to the classical SFM. The modified model is presented to study the impact of following behavior on the process of lane formation, the conflict, the number of lanes formed, and the traffic efficiency in the simulations. Simulation results show that the following behavior has a significant effect on the phenomenon of lane formation and the traffic efficiency.
基金Project (No. 10134782) supported by the Regional Government of Berlin within the Grant Program ProFIT partially financed by the European Fund for Regional Development (EFRE)
文摘We present a derived grid-based model for the simulation of pedestrian flow. Interactions among pedestrians are considered as the result of forces within a certain neighbourhood. Unlike the social force model,the forces here,as in Newtonian physics,are proportional to the inverse of the square of the distance. Despite the notion of neighbourhood and the underlying grid,this model differs from the existing cellular automaton(CA) models in that the pedestrians are treated as individuals. Bresenham's algorithm for line rastering is applied in the step calculation.