Synthesis of 1-(2-imidazolylazo)-2-naphthol-4-sulfonic acid is described including its physical and chemical properties and spectroscopic data. The reagent reacts with various transition metal ions to form water-solub...Synthesis of 1-(2-imidazolylazo)-2-naphthol-4-sulfonic acid is described including its physical and chemical properties and spectroscopic data. The reagent reacts with various transition metal ions to form water-soluble and colored chelates which can be decomposed by EDTA exoept cobalt chelate. Present method has good selectivity.展开更多
Spectrophotometric study was carried out, for the first time, to investigate the reaction between the vasodilator pentoxifylline hydrochloride (POX) and 1,2-naphthoquinone-4-sulphonate (NQS) reagent. The reaction occu...Spectrophotometric study was carried out, for the first time, to investigate the reaction between the vasodilator pentoxifylline hydrochloride (POX) and 1,2-naphthoquinone-4-sulphonate (NQS) reagent. The reaction occurs in alkaline medium to activate the nucleophilic substitution reaction producing an orange-colored product measured spectrophometrically at λ<sub>max</sub> 472 nm. The variables affecting the reaction were carefully studied and the conditions were optimized. The kinetics of the reaction was investigated and its activation energy was found to be 0.262 cal/mol. Owing to its low activation energy, the reaction proceeded easily and was successfully used for simple and rapid assay of POX. The stoichiometry of the reaction was determined (1:1), and the reaction mechanism was suggested. To develop a high-throughput methodology used in quality control laboratory, a comparative study of the reaction using the conventional spectrophotometric versus microwell assay was applied. Under the optimum reaction conditions, the initial rate and fixed time methods were utilized for constructing the calibration graphs for determination of POX concentrations. The linear range was 10 - 120 μg/ml with good correlation coefficients (0.9987 - 0.9998). The LOD was 2.5 and 3.4 μg/ml for initial rate and fixed time methods, respectively. The intra- and inter-day accuracy and precision of the developed methods were satisfactory, where RSD was ≤3.94%. The present methods have been successfully applied to the determination of POX in its pharmaceutical tablets, and the percentage recovery values were 97.9% - 101.9%. Therefore, we strongly recommend the proposed methods for determination of POX in quality control laboratories.展开更多
Sodium 3,5-bis(hydroxyimino)-1-methyl-2,4,6-trioxocyclohexanide C7H5N2NaO5 (I) has been isolated as the only product of the reaction of nitrosation of methylphloroglucinol. The structure of the titled compound has bee...Sodium 3,5-bis(hydroxyimino)-1-methyl-2,4,6-trioxocyclohexanide C7H5N2NaO5 (I) has been isolated as the only product of the reaction of nitrosation of methylphloroglucinol. The structure of the titled compound has been determined from single crystal X-ray diffraction data. The hydrated C7H5N2NaO52.5H2O crystallizes in the monoclinic space group C2/c, with a(?) 16.408(3);b(?) 12.446(3);c(?) 13.716(3);(o) 126.34(3). The planar organic anion exists in a triketo-dihydroxyimino form with the C–O and C–N distances from 1.220(2) to 1.271(2)?? and from 1.292(2) to 1.293?? respectively. In the IR spectrum of I, the sharp absorption band occurred at 1681 cm-1 due to C=O stretching indicating the strong H-interactions. The correlations of theoretical (DFT-B3LYP/aug-cc-pVDZ) and experimental UV-vis absorption spectra in neutral and alkaline ethanolic solutions showed the existence of hydroxyimino-nitroso tautomerism while ionization of I.展开更多
The work herein employed a rotating packed bed(RPB)to intensify the sulfonation process of 1,4-diaminoanthraquinone leuco(DL)in an attempt to improve the yield of the product 1,4-diaminoanthra quinone-2-sulfonic acid(...The work herein employed a rotating packed bed(RPB)to intensify the sulfonation process of 1,4-diaminoanthraquinone leuco(DL)in an attempt to improve the yield of the product 1,4-diaminoanthra quinone-2-sulfonic acid(DSA).First,the effects of operating conditions in a stirred tank reactor(STR),including stirring speed,chlorosulfonic acid/DL molar ratio(η),solvent/DL mass ratio(ζ),reaction temperature and dropping speed of chlorosulfonic acid,on the yield of DSA were investigated.The yield of DSA can reach 87.34%under the optimal operating conditions:stirring speed of 500 r·min^(-1),ηof 4.5,ζof 7,reaction temperature of 150℃,dropping speed of 0.61 ml·min^(-1).In addition,the kinetics of the sulfonation process via the shrinking core model revealed that the reaction is controlled by diffusion via a product layer under the reaction temperature of 140℃.Furthermore,the RPB was employed to intensify the mass transfer between liquid and solid phases during the sulfonation reaction process.The results showed that the DSA yield of 92.69%obtained by RPB was 5.35%higher than that by STR,indicating that RPB can significantly intensify the mass transfer in the liquid-solid phase sulfonation reaction process.展开更多
文摘Synthesis of 1-(2-imidazolylazo)-2-naphthol-4-sulfonic acid is described including its physical and chemical properties and spectroscopic data. The reagent reacts with various transition metal ions to form water-soluble and colored chelates which can be decomposed by EDTA exoept cobalt chelate. Present method has good selectivity.
文摘Spectrophotometric study was carried out, for the first time, to investigate the reaction between the vasodilator pentoxifylline hydrochloride (POX) and 1,2-naphthoquinone-4-sulphonate (NQS) reagent. The reaction occurs in alkaline medium to activate the nucleophilic substitution reaction producing an orange-colored product measured spectrophometrically at λ<sub>max</sub> 472 nm. The variables affecting the reaction were carefully studied and the conditions were optimized. The kinetics of the reaction was investigated and its activation energy was found to be 0.262 cal/mol. Owing to its low activation energy, the reaction proceeded easily and was successfully used for simple and rapid assay of POX. The stoichiometry of the reaction was determined (1:1), and the reaction mechanism was suggested. To develop a high-throughput methodology used in quality control laboratory, a comparative study of the reaction using the conventional spectrophotometric versus microwell assay was applied. Under the optimum reaction conditions, the initial rate and fixed time methods were utilized for constructing the calibration graphs for determination of POX concentrations. The linear range was 10 - 120 μg/ml with good correlation coefficients (0.9987 - 0.9998). The LOD was 2.5 and 3.4 μg/ml for initial rate and fixed time methods, respectively. The intra- and inter-day accuracy and precision of the developed methods were satisfactory, where RSD was ≤3.94%. The present methods have been successfully applied to the determination of POX in its pharmaceutical tablets, and the percentage recovery values were 97.9% - 101.9%. Therefore, we strongly recommend the proposed methods for determination of POX in quality control laboratories.
文摘Sodium 3,5-bis(hydroxyimino)-1-methyl-2,4,6-trioxocyclohexanide C7H5N2NaO5 (I) has been isolated as the only product of the reaction of nitrosation of methylphloroglucinol. The structure of the titled compound has been determined from single crystal X-ray diffraction data. The hydrated C7H5N2NaO52.5H2O crystallizes in the monoclinic space group C2/c, with a(?) 16.408(3);b(?) 12.446(3);c(?) 13.716(3);(o) 126.34(3). The planar organic anion exists in a triketo-dihydroxyimino form with the C–O and C–N distances from 1.220(2) to 1.271(2)?? and from 1.292(2) to 1.293?? respectively. In the IR spectrum of I, the sharp absorption band occurred at 1681 cm-1 due to C=O stretching indicating the strong H-interactions. The correlations of theoretical (DFT-B3LYP/aug-cc-pVDZ) and experimental UV-vis absorption spectra in neutral and alkaline ethanolic solutions showed the existence of hydroxyimino-nitroso tautomerism while ionization of I.
基金financially supported by the National Key Research and Development Program of China(2016YFB0301500)the National Natural Science Foundation of China(21878009)。
文摘The work herein employed a rotating packed bed(RPB)to intensify the sulfonation process of 1,4-diaminoanthraquinone leuco(DL)in an attempt to improve the yield of the product 1,4-diaminoanthra quinone-2-sulfonic acid(DSA).First,the effects of operating conditions in a stirred tank reactor(STR),including stirring speed,chlorosulfonic acid/DL molar ratio(η),solvent/DL mass ratio(ζ),reaction temperature and dropping speed of chlorosulfonic acid,on the yield of DSA were investigated.The yield of DSA can reach 87.34%under the optimal operating conditions:stirring speed of 500 r·min^(-1),ηof 4.5,ζof 7,reaction temperature of 150℃,dropping speed of 0.61 ml·min^(-1).In addition,the kinetics of the sulfonation process via the shrinking core model revealed that the reaction is controlled by diffusion via a product layer under the reaction temperature of 140℃.Furthermore,the RPB was employed to intensify the mass transfer between liquid and solid phases during the sulfonation reaction process.The results showed that the DSA yield of 92.69%obtained by RPB was 5.35%higher than that by STR,indicating that RPB can significantly intensify the mass transfer in the liquid-solid phase sulfonation reaction process.