Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in large...Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.展开更多
The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ...The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.展开更多
Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless...Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.展开更多
BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCT...BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCTs).However,real-world data on the comparative efficacy and safety of individual SGLT-2i medications is sparse.AIM To study the comparative efficacy and safety of SGLT-2i using real-world clinical data.METHODS We evaluated the comparative efficacy data of 3 SGLT-2i drugs(dapagliflozin,canagliflozin,and empagliflozin)used for treating patients with type 2 diabetes mellitus.Data on the reduction of glycated hemoglobin(HbA1c),body weight,blood pressure(BP),urine albumin creatinine ratio(ACR),and adverse effects were recorded retrospectively.RESULTS Data from 467 patients with a median age of 64(14.8)years,294(62.96%)males and 375(80.5%)Caucasians were analysed.Median diabetes duration was 16.0(9.0)years,and the duration of SGLT-2i use was 3.6(2.1)years.SGLT-2i molecules used were dapagliflozin 10 mg(n=227;48.6%),canagliflozin 300 mg(n=160;34.3%),and empagliflozin 25 mg(n=80;17.1).Baseline median(interquartile range)HbA1c in mmol/mol were:dapagliflozin-78.0(25.3),canagliflozin-80.0(25.5),and empagliflozin-75.0(23.5)respectively.The respective median HbA1c reduction at 12 months and the latest review(just prior to the study)were:66.5(22.8)&69.0(24.0),67.0(16.3)&66.0(28.0),and 67.0(22.5)&66.5(25.8)respectively(P<0.001 for all comparisons from baseline).Significant improvements in body weight(in kilograms)from baseline to study end were noticed with dapagliflozin-101(29.5)to 92.2(25.6),and canagliflozin 100(28.3)to 95.3(27.5)only.Significant reductions in median systolic and diastolic BP,from 144(21)mmHg to 139(23)mmHg;(P=0.015),and from 82(16)mmHg to 78(19)mmHg;(P<0.001)respectively were also observed.A significant reduction of microalbuminuria was observed with canagliflozin only[ACR 14.6(42.6)at baseline to 8.9(23.7)at the study end;P=0.043].Adverse effects of SGLT-2i were as follows:genital thrush and urinary infection-20(8.8%)&17(7.5%)with dapagliflozin;9(5.6%)&5(3.13%)with canagliflozin;and 4(5%)&4(5%)with empagliflozin.Diabetic ketoacidosis was observed in 4(1.8%)with dapagliflozin and 1(0.63%)with canagliflozin.CONCLUSION Treatment of patients with SGLT-2i is associated with statistically significant reductions in HbA1c,body weight,and better than those reported in RCTs,with low side effect profiles.A review of large-scale real-world data is needed to inform better clinical practice decision making.展开更多
As a cornerstone of the national economy,the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements.Flotation is a promising technique...As a cornerstone of the national economy,the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements.Flotation is a promising technique for lead recovery from sintering dust,but efficient separation from Fe_(2)O_(3) is still challenging.This study investigated the cooperative effect of sodium lauryl sulfate(SLS,C_(12)H_(25)SO_(4)Na)and sodium pyrophosphate(SPP,Na_(4)P_(2)O_(7))on the selective flotation of lead oxide minerals(PbOHCl and PbSO_(4))from hematite(Fe_(2)O_(3)).Optimal flotation conditions were first identified,resulting in high recovery of lead oxide minerals while inhibiting Fe_(2)O_(3) flotation.Zeta potential measurements,Fourier transform infrared spectroscopy(FT-IR)analysis,adsorption capacity analysis,and X-ray photoelectron spectroscopy(XPS)studies offer insights into the adsorption behaviors of the reagents on mineral surfaces,revealing strong adsorption of SLS on PbOHCl and PbSO_(4) surfaces and remarkable adsorption of SPP on Fe_(2)O_(3).The proposed model of reagent adsorption on mineral surfaces illustrates the selective adsorption behavior,highlighting the pivotal role of reagent adsorption in the separation process.These findings contribute to the efficient and environmentally friendly utilization of iron ore sintering dust for lead recovery,paving the way for sustainable resource management in the iron and steel industry.展开更多
As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibitio...As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves.展开更多
The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol...The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.展开更多
A rapid, straightforward, sensitive, efficient, and cost-effective reverse-phase high-performance liquid chromatographic method was employed for the simultaneous determination of Sorbitol, Sodium Lactate, and Chloride...A rapid, straightforward, sensitive, efficient, and cost-effective reverse-phase high-performance liquid chromatographic method was employed for the simultaneous determination of Sorbitol, Sodium Lactate, and Chlorides in a drug solution for infusion. Sorbitol, Sodium lactate, and Chloride are all officially recognized in the USP monograph. Assay methods are provided through various techniques, with titrations being ineffective for trace-level quantification. Alternatively, IC, AAS, and ICP-MS, though highly accurate, are costly and often unavailable to most testing facilities. When considering methods, it’s important to prioritize both quality control requirements and user-friendly techniques. A simple HPLC simultaneous method was developed for the quantification of Chlorides, Sorbitol, and Sodium Lactate with a shorter run time. The separation utilized a Shimpack SCR-102(H) ion exclusion analytical column (7.9 mm × 300 mm, 7 μm), with a flow rate of 0.6 mL per min. The column compartment temperature was maintained at 40°C, and the injection volume was set at 10 μL, with detection at 200 nm. All measurements were conducted in a 0.1% solution of phosphoric acid. The analytical curves demonstrated linearity (r > 0.9999) in the concentration range of 0.79 to 3.8 mg per mL for Sodium Lactate (SL), 0.16 to 0.79 mg per mL for Sodium Chloride (SC), and 1.5 to 7.2 mg per mL for Sorbitol. Validation of the developed method followed the guidelines of the International Conference on Harmonization (ICH Q2B) and USP. The method exhibited precision, robustness, accuracy, and selectivity. In accelerated stability testing over 6 months, no significant variations were observed in organoleptic analysis and pH. Consequently, the developed method is deemed suitable for routine quality control analyses, enabling the simultaneous determination of Sodium Lactate, Sodium Chloride, and Sorbitol in pharmaceutical formulations and infusions.展开更多
Manganese-based oxide electrode materials suffer from severe Jahn-Teller(J-T)distortion,leading to severe cycle instability in sodium ion storage.However,it is difficult to adjust the electron at d orbitals exactly to...Manganese-based oxide electrode materials suffer from severe Jahn-Teller(J-T)distortion,leading to severe cycle instability in sodium ion storage.However,it is difficult to adjust the electron at d orbitals exactly to a low spin state to eliminate orbital degeneracy and suppress J-T distortion fundamentally.This article constructed concentration-controllable Mn/O coupled vacancy and amorphous network in Mn_(3)O_(4) and coated it with nitrogen-doped carbon aerogel(Mn_(3-x)O_(4-y)@NCA).The existence of Mn/O vacancies has been confirmed by scanning transmission electron microscopy(STEM)and positron annihilation lifetime spectroscopy(PALS).Atomic absorption spectroscopy(AAS)and X-ray photoelectron spectroscopy(XPS)determine the most optimal ratio of Mn/O vacancies for sodium ion storage is 1:2.Density functional theory(DFT)calculations prove that Mn/O coupled vacancies with the ratio of 1:2could exactly induce a low spin states and a d~4 electron configuration of Mn,suppressing the J-T distortion successfully.The abundant amorphous regions can shorten the transport distance of sodium ions,increase the electrochemically active sites and improve the pseudocapacitance response.From the synergetic effect of Mn/O coupled vacancies and amorphous regions,Mn_(3-x)O_(4-y)@NCA exhibits an energy density of 37.5 W h kg^(-1)and an ultra-high power density of 563 W kg^(-1)in an asymmetric supercapacitor.In sodium-ion batteries,it demonstrates high reversible capacity and exceptional cycling stability.This research presents a new method to improve the Na^(+)storage performance in manganese-based oxide,which is expected to be generalized to other structural distortion.展开更多
Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a hi...Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance.展开更多
This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances t...This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances the structural stability during extensive cycling,increases the operation voltage,and induces a capacity increase while also activating oxygen redox,respectively,in Na_(0.7)[Ni_(0.2)V_(Ni0.1)Ru_(0.3)Mn_(0.4)]O_(2)(V-NRM)compound.Various analytical techniques including transmission electron microscopy,X-ray absorption near edge spectroscopy,operando X-ray diffraction,and operando differential electrochemical mass spectrometry are employed to assess changes in the average oxidation states and structural distortions.The results demonstrate that V-NRM exhibits higher capacity than NRM and maintains a moderate capacity retention of 81%after 100 cycles.Furthermore,the formation of additional lone-pair electrons in the O 2p orbital enables V-NRM to utilize more capacity from the oxygen redox validated by density functional calculation,leading to a widened dominance of the OP4 phase without releasing O_(2) gas.These findings offer valuable insights for the design of advanced high-capacity cathode materials with improved performance and sustainability in sodium-ion batteries.展开更多
Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the ...Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency.展开更多
Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in...Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens.Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction.Sodium butyrate was demonstrated to modulate hepatic lipid metabolism,alle-viate oxidative stress and improve mitochondrial dysfunction in vitro and mice models.Nevertheless,there is limited existing research on coated sodium butyrate(CSB)to prevent FLHS in laying hens,and whether and how CSB exerts the anti-FLHS effect still needs to be explored.In this experiment,the FLHS model was induced by administering a high-energy low-protein(HELP)diet in laying hens.The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function.Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each,namely,the CON group(normal diet),HELP group(HELP diet),CH500 group(500 mg/kg CSB added to HELP diet)and CH750 group(750 mg/kg CSB added to HELP diet).The duration of the trial encompassed a period of 10 weeks.Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and patho-logical damage,reducing the gene levels of fatty acid synthesis,and promoting the mRNA levels of key enzymes of fatty acid catabolism.CSB reduced oxidative stress induced by the HELP diet,upregulated the activity of GSH-Px and SOD,and decreased the content of MDA and ROS.CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α,IL-1β,and F4/80.In addition,dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response(UPRmt),mitochondrial damage,and decline of ATPase activity.HELP diet decreased the autophagosome formation,and downregulated LC3B but upregulated p62 protein expression,which CSB administration reversed.CSB reduced HELP-induced apoptosis,as indicated by decreases in the Bax/Bcl-2,Caspase-9,Caspase-3,and Cyt C expression levels.Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics,autophagy,and apoptosis in laying hens.Consequently,CSB,as a feed additive,exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism.展开更多
Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alte...Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alternative to the lithium-ion batteries equivalent in large-scale energy storage due to their natural abundance and prospective inexpensive cost.Among various anode materials of SIBs,beneficial properties,such as outstanding stability,great abundance,and environmental friendliness,make sodium titanates(NTOs),one of the most promising anode materials for the rechargeable SIBs.Nevertheless,there are still enormous challenges in application of NTO,owing to its low intrinsic electronic conductivity and collapse of structure.The research on NTOs is still in its infancy;there are few conclusive reviews about the specific function of various modification methods.Herein,we summarize the typical strategies of optimization and analysis the fine structures and fabrication methods of NTO anodes combined with the application of in situ characterization techniques.Our work provides effective guidance for promoting the continuous development,equipping NTOs in safety-critical systems,and lays a foundation for the development of NTO-anode materials in SIBs.展开更多
The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability.Oxygen redox can cont...The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability.Oxygen redox can contribute extra capacity to increase energy density,but results in lattice instability and capacity fading caused by lattice oxygen gliding and oxygen release.In this work,reversible Mn^(2+)/Mn^(4+)redox is realized in a P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)cathode material with high specific capacity and structure stability via Co substitution.The contribution of oxygen redox is suppressed significantly by reversible Mn^(2+)/Mn^(4+)redox without sacrificing capacity,thus reducing lattice oxygen release and improving the structure stability.Synchrotron X-ray techniques reveal that P3 phase is well maintained in a wide voltage window of 1.5-4.5 V vs.Na^(+)/Na even at 10 C and after long-term cycling.It is disclosed that charge compensation from Co/Mn-ions contributes to the voltage region below 4.2 V and O-ions contribute to the whole voltage range.The synergistic contributions of Mn^(2+)/Mn^(4+),Co^(2+)/Co^(3+),and O^(2-)/(O_n)^(2-)redox in P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)lead to a high reversible capacity of 215.0 m A h g^(-1)at 0.1 C with considerable cycle stability.The strategy opens up new opportunities for the design of high capacity cathode materials for rechargeable batteries.展开更多
Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which ar...Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which are less costly,are a promising replacement for LIBs because of the abundant natural reserves of sodium.The anode of a SIB is a necessary component of the battery but is less understood than the cathode.This review outlines the development of various types of anodes,including carbonbased,metallic and organic,which operate using different reaction mechanisms such as intercalation,alloying and conversion,and considers their challenges and prospects.Strategies for modifying their structures by doping and coating,and also modifying the solid electrolyte interface are discussed.In addition,this review also discusses the challenges encountered by the anode of SIBs and the solutions.展开更多
Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electro...Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electrochemical performance is greatly limited.In this study,a nickel/manganese sulfide material(Ni_(0.96)S_(x)/MnS_(y)-NC)with adjustable sulfur vacancies and heterogeneous hollow spheres was prepared using a simple method.The introduction of a concentration-adjustable sulfur vacancy enables the generation of a heterogeneous interface between bimetallic sulfide and sulfur vacancies.This interface collectively creates an internal electric field,improving the mobility of electrons and ions,increasing the number of electrochemically active sites,and further optimizing the performance of Na~+storage.The direction of electron flow is confirmed by Density functional theory(DFT)calculations.The hollow nano-spherical material provides a buffer for expansion,facilitating rapid transfer kinetics.Our innovative discovery involves the interaction between the ether-based electrolyte and copper foil,leading to the formation of Cu_9S_5,which grafts the active material and copper current collector,reinforcing mechanical supporting.This results in a new heterostructure of Cu_9S_5 with Ni_(0.96)S_(x)/MnS_(y),contributing to the stabilization of structural integrity for long-cycle performance.Therefore,Ni_(0.96)S_(x)/MnS_(y)-NC exhibits excellent electrochemical properties following our modification route.Regarding stability performance,Ni0_(.96)S_(x)/MnS_(y)-NC demonstrates an average decay rate of 0.00944%after 10,000 cycles at an extremely high current density of 10000 mA g^(-1),A full cell with a high capacity of 304.2 mA h g^(-1)was also successfully assembled by using Na_(3)V_(2)(PO_(4))_(3)/C as the cathode.This study explores a novel strategy for interface/vacancy co-modification in the fabrication of high-performance sodium-ion batteries electrode.展开更多
Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applicatio...Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.展开更多
To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using s...To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.展开更多
Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefor...Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefore,sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries(SMBs).Herein,a design concept for the incorporation of metal-organic framework(MOF)in polymer matrix(polyvinylidene fluoride-hexafluoropropylene)is practiced to prepare a novel gel polymer electrolyte(PH@MOF polymer-based electrolyte[GPE])and thus to achieve high-performance SMBs.The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na^(+)but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction.A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm^(-2)with areal capacity of 5 mA h cm^(-2)is achieved by symmetric cells based on the resulted GPE while the Na_(3)V_(2)O_(2)(PO_(4))_(2)F@rGO(NVOPF)|PH@MOF|Nacell also displays impressive specific cycling capacity(113.3 mA h g^(-1)at 1 C)and rate capability with considerable capacity retention.展开更多
基金supported by the Double Support Project (035–2221993229)。
文摘Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA.
基金supported by the National Natural Science Foundation of China (52173273)Fundamental Research Funds for the Central Universities (2022CX11013)+2 种基金Shanxi Province Science Foundation for Youths (No.202203021212391)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.2022L253)Institute Foundation Project of China Academy of Railway Sciences Corporation Limited Metals and Chemistry Research Institute (No.2023SJ02)。
文摘The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.
基金financially supported by the National Natural Science Foundation of China (Grants. 22075279, 22279137, 22125903, 22109040)National Key R&D Program of China (Grant 2022YFA1504100)+2 种基金Dalian Innovation Support Plan for High Level Talents (2019RT09)Dalian National Labo- ratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL202016, DNL202019), DICP (DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002, YLU- DNL Fund 2021009)。
文摘Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.
文摘BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCTs).However,real-world data on the comparative efficacy and safety of individual SGLT-2i medications is sparse.AIM To study the comparative efficacy and safety of SGLT-2i using real-world clinical data.METHODS We evaluated the comparative efficacy data of 3 SGLT-2i drugs(dapagliflozin,canagliflozin,and empagliflozin)used for treating patients with type 2 diabetes mellitus.Data on the reduction of glycated hemoglobin(HbA1c),body weight,blood pressure(BP),urine albumin creatinine ratio(ACR),and adverse effects were recorded retrospectively.RESULTS Data from 467 patients with a median age of 64(14.8)years,294(62.96%)males and 375(80.5%)Caucasians were analysed.Median diabetes duration was 16.0(9.0)years,and the duration of SGLT-2i use was 3.6(2.1)years.SGLT-2i molecules used were dapagliflozin 10 mg(n=227;48.6%),canagliflozin 300 mg(n=160;34.3%),and empagliflozin 25 mg(n=80;17.1).Baseline median(interquartile range)HbA1c in mmol/mol were:dapagliflozin-78.0(25.3),canagliflozin-80.0(25.5),and empagliflozin-75.0(23.5)respectively.The respective median HbA1c reduction at 12 months and the latest review(just prior to the study)were:66.5(22.8)&69.0(24.0),67.0(16.3)&66.0(28.0),and 67.0(22.5)&66.5(25.8)respectively(P<0.001 for all comparisons from baseline).Significant improvements in body weight(in kilograms)from baseline to study end were noticed with dapagliflozin-101(29.5)to 92.2(25.6),and canagliflozin 100(28.3)to 95.3(27.5)only.Significant reductions in median systolic and diastolic BP,from 144(21)mmHg to 139(23)mmHg;(P=0.015),and from 82(16)mmHg to 78(19)mmHg;(P<0.001)respectively were also observed.A significant reduction of microalbuminuria was observed with canagliflozin only[ACR 14.6(42.6)at baseline to 8.9(23.7)at the study end;P=0.043].Adverse effects of SGLT-2i were as follows:genital thrush and urinary infection-20(8.8%)&17(7.5%)with dapagliflozin;9(5.6%)&5(3.13%)with canagliflozin;and 4(5%)&4(5%)with empagliflozin.Diabetic ketoacidosis was observed in 4(1.8%)with dapagliflozin and 1(0.63%)with canagliflozin.CONCLUSION Treatment of patients with SGLT-2i is associated with statistically significant reductions in HbA1c,body weight,and better than those reported in RCTs,with low side effect profiles.A review of large-scale real-world data is needed to inform better clinical practice decision making.
基金supported by the National Natural Science Foundation of China(Nos.52004335 and 52204298)the National Natural Science Foundation of Hunan Province,China(No.2023JJ20071)the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3067).
文摘As a cornerstone of the national economy,the iron and steel industry generates a significant amount of sintering dust containing both valuable lead resources and deleterious elements.Flotation is a promising technique for lead recovery from sintering dust,but efficient separation from Fe_(2)O_(3) is still challenging.This study investigated the cooperative effect of sodium lauryl sulfate(SLS,C_(12)H_(25)SO_(4)Na)and sodium pyrophosphate(SPP,Na_(4)P_(2)O_(7))on the selective flotation of lead oxide minerals(PbOHCl and PbSO_(4))from hematite(Fe_(2)O_(3)).Optimal flotation conditions were first identified,resulting in high recovery of lead oxide minerals while inhibiting Fe_(2)O_(3) flotation.Zeta potential measurements,Fourier transform infrared spectroscopy(FT-IR)analysis,adsorption capacity analysis,and X-ray photoelectron spectroscopy(XPS)studies offer insights into the adsorption behaviors of the reagents on mineral surfaces,revealing strong adsorption of SLS on PbOHCl and PbSO_(4) surfaces and remarkable adsorption of SPP on Fe_(2)O_(3).The proposed model of reagent adsorption on mineral surfaces illustrates the selective adsorption behavior,highlighting the pivotal role of reagent adsorption in the separation process.These findings contribute to the efficient and environmentally friendly utilization of iron ore sintering dust for lead recovery,paving the way for sustainable resource management in the iron and steel industry.
基金supported by the Air Force Characteristic Medical Center Youth Talent Program 22YXQN020。
文摘As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves.
文摘The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies.
文摘A rapid, straightforward, sensitive, efficient, and cost-effective reverse-phase high-performance liquid chromatographic method was employed for the simultaneous determination of Sorbitol, Sodium Lactate, and Chlorides in a drug solution for infusion. Sorbitol, Sodium lactate, and Chloride are all officially recognized in the USP monograph. Assay methods are provided through various techniques, with titrations being ineffective for trace-level quantification. Alternatively, IC, AAS, and ICP-MS, though highly accurate, are costly and often unavailable to most testing facilities. When considering methods, it’s important to prioritize both quality control requirements and user-friendly techniques. A simple HPLC simultaneous method was developed for the quantification of Chlorides, Sorbitol, and Sodium Lactate with a shorter run time. The separation utilized a Shimpack SCR-102(H) ion exclusion analytical column (7.9 mm × 300 mm, 7 μm), with a flow rate of 0.6 mL per min. The column compartment temperature was maintained at 40°C, and the injection volume was set at 10 μL, with detection at 200 nm. All measurements were conducted in a 0.1% solution of phosphoric acid. The analytical curves demonstrated linearity (r > 0.9999) in the concentration range of 0.79 to 3.8 mg per mL for Sodium Lactate (SL), 0.16 to 0.79 mg per mL for Sodium Chloride (SC), and 1.5 to 7.2 mg per mL for Sorbitol. Validation of the developed method followed the guidelines of the International Conference on Harmonization (ICH Q2B) and USP. The method exhibited precision, robustness, accuracy, and selectivity. In accelerated stability testing over 6 months, no significant variations were observed in organoleptic analysis and pH. Consequently, the developed method is deemed suitable for routine quality control analyses, enabling the simultaneous determination of Sodium Lactate, Sodium Chloride, and Sorbitol in pharmaceutical formulations and infusions.
基金supported by the National Natural Science Foundation of China (22278231,22005165 and 22376110)the Natural Science Foundation Project of Shandong Province (ZR2022MB092 and ZR2023ME098)the Taishan Scholar Program (ts201712030)。
文摘Manganese-based oxide electrode materials suffer from severe Jahn-Teller(J-T)distortion,leading to severe cycle instability in sodium ion storage.However,it is difficult to adjust the electron at d orbitals exactly to a low spin state to eliminate orbital degeneracy and suppress J-T distortion fundamentally.This article constructed concentration-controllable Mn/O coupled vacancy and amorphous network in Mn_(3)O_(4) and coated it with nitrogen-doped carbon aerogel(Mn_(3-x)O_(4-y)@NCA).The existence of Mn/O vacancies has been confirmed by scanning transmission electron microscopy(STEM)and positron annihilation lifetime spectroscopy(PALS).Atomic absorption spectroscopy(AAS)and X-ray photoelectron spectroscopy(XPS)determine the most optimal ratio of Mn/O vacancies for sodium ion storage is 1:2.Density functional theory(DFT)calculations prove that Mn/O coupled vacancies with the ratio of 1:2could exactly induce a low spin states and a d~4 electron configuration of Mn,suppressing the J-T distortion successfully.The abundant amorphous regions can shorten the transport distance of sodium ions,increase the electrochemically active sites and improve the pseudocapacitance response.From the synergetic effect of Mn/O coupled vacancies and amorphous regions,Mn_(3-x)O_(4-y)@NCA exhibits an energy density of 37.5 W h kg^(-1)and an ultra-high power density of 563 W kg^(-1)in an asymmetric supercapacitor.In sodium-ion batteries,it demonstrates high reversible capacity and exceptional cycling stability.This research presents a new method to improve the Na^(+)storage performance in manganese-based oxide,which is expected to be generalized to other structural distortion.
基金The authors are grateful for the grants provided by the National Natural Science Foundation of China(Grant no.52274309)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant no.CX20220183)Simin Li thanks the National Natural Science Foundation of China(Grant no.52204327).
文摘Hard carbon is regarded as a promising anode candidate for sodium-ion batteries due to its low cost,relatively low working voltage,and satisfactory specific capacity.However,it still remains a challenge to obtain a high-performance hard carbon anode from cost-effective carbon sources.In addition,the solid electrolyte interphase(SEI)is subjected to continuous rupture during battery cycling,leading to fast capacity decay.Herein,a lignin-based hard carbon with robust SEI is developed to address these issues,effectively killing two birds with one stone.An innovative gas-phase removal-assisted aqueous washing strategy is developed to remove excessive sodium in the precursor to upcycle industrial lignin into high-value hard carbon,which demonstrated an ultrahigh sodium storage capacity of 359 mAh g^(-1).It is found that the residual sodium components from lignin on hard carbon act as active sites that controllably regulate the composition and morphology of SEI and guide homogeneous SEI growth by a near-shore aggregation mechanism to form thin,dense,and organic-rich SEI.Benefiting from these merits,the as-developed SEI shows fast Na+transfer at the interphases and enhanced structural stability,thus preventing SEI rupture and reformation,and ultimately leading to a comprehensive improvement in sodium storage performance.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(NRF-2020R1A6A1A03043435,NRF-2023R1A2C2003210,and NRF-2022M3H4A1A04096478)by Technology Innovation Program(Alchemist Project,20012196,Al based supercritical materials discovery)funded by the Ministry of Trade,Industry&Energy,Korea.support from the“Bundesministerium fur Bildung und Forschung”(BMBF)and the computing time granted through JARA-HPC on the supercomputer JURECA at Forschungszentrum Julich.
文摘This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na_(0.6)[Ni_(0.3)Ru_(0.3)Mn_(0.4)]O_(2)(NRM)cathode material.The incorporation of Ru,Ni,and vacancy enhances the structural stability during extensive cycling,increases the operation voltage,and induces a capacity increase while also activating oxygen redox,respectively,in Na_(0.7)[Ni_(0.2)V_(Ni0.1)Ru_(0.3)Mn_(0.4)]O_(2)(V-NRM)compound.Various analytical techniques including transmission electron microscopy,X-ray absorption near edge spectroscopy,operando X-ray diffraction,and operando differential electrochemical mass spectrometry are employed to assess changes in the average oxidation states and structural distortions.The results demonstrate that V-NRM exhibits higher capacity than NRM and maintains a moderate capacity retention of 81%after 100 cycles.Furthermore,the formation of additional lone-pair electrons in the O 2p orbital enables V-NRM to utilize more capacity from the oxygen redox validated by density functional calculation,leading to a widened dominance of the OP4 phase without releasing O_(2) gas.These findings offer valuable insights for the design of advanced high-capacity cathode materials with improved performance and sustainability in sodium-ion batteries.
基金funding support from the National Natural Science Foundation of China (22125902, 22109150, 22279126, U2032202, and 21975243)the DNL cooperation Fund, CAS (DNL202020)+1 种基金the National Key R&D Program of China (no. 2022YFA1504101)the Anhui Provincial Natural Science Foundation (2108085QB65)
文摘Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency.
基金This research was supported by the Twinning service plan of the Zhejiang Provincial Team Science and the Science and Technology Develpoment project of Hangzhou(202003A02).
文摘Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens.Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction.Sodium butyrate was demonstrated to modulate hepatic lipid metabolism,alle-viate oxidative stress and improve mitochondrial dysfunction in vitro and mice models.Nevertheless,there is limited existing research on coated sodium butyrate(CSB)to prevent FLHS in laying hens,and whether and how CSB exerts the anti-FLHS effect still needs to be explored.In this experiment,the FLHS model was induced by administering a high-energy low-protein(HELP)diet in laying hens.The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function.Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each,namely,the CON group(normal diet),HELP group(HELP diet),CH500 group(500 mg/kg CSB added to HELP diet)and CH750 group(750 mg/kg CSB added to HELP diet).The duration of the trial encompassed a period of 10 weeks.Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and patho-logical damage,reducing the gene levels of fatty acid synthesis,and promoting the mRNA levels of key enzymes of fatty acid catabolism.CSB reduced oxidative stress induced by the HELP diet,upregulated the activity of GSH-Px and SOD,and decreased the content of MDA and ROS.CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α,IL-1β,and F4/80.In addition,dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response(UPRmt),mitochondrial damage,and decline of ATPase activity.HELP diet decreased the autophagosome formation,and downregulated LC3B but upregulated p62 protein expression,which CSB administration reversed.CSB reduced HELP-induced apoptosis,as indicated by decreases in the Bax/Bcl-2,Caspase-9,Caspase-3,and Cyt C expression levels.Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics,autophagy,and apoptosis in laying hens.Consequently,CSB,as a feed additive,exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism.
基金supported by projects from the National Natural Science Foundation of China(U20A20145)the Open Project of State Key Laboratory of Environment-friendly Energy Materials(20kfhg07)+6 种基金Distinguished Young Foundation of Sichuan Province(2020JDJQ0027)2020 Strategic Cooperation Project between Sichuan University and the Zigong Municipal People's Government(2020CDZG-09)State Key Laboratory of Polymer Materials Engineering(sklpme2020-3-02)Sichuan Provincial Department of Science and Technology(2020YFG0471,2020YFG0022,2022YFG0124)Sichuan Province Science and Technology Achievement Transfer and Transformation Project(21ZHSF0111)Sichuan University Postdoctoral Interdisciplinary Innovation Fund(2021SCU12084)Start-up funding of Chemistry and Chemical Engineering Guangdong Laboratory(2122010)。
文摘Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alternative to the lithium-ion batteries equivalent in large-scale energy storage due to their natural abundance and prospective inexpensive cost.Among various anode materials of SIBs,beneficial properties,such as outstanding stability,great abundance,and environmental friendliness,make sodium titanates(NTOs),one of the most promising anode materials for the rechargeable SIBs.Nevertheless,there are still enormous challenges in application of NTO,owing to its low intrinsic electronic conductivity and collapse of structure.The research on NTOs is still in its infancy;there are few conclusive reviews about the specific function of various modification methods.Herein,we summarize the typical strategies of optimization and analysis the fine structures and fabrication methods of NTO anodes combined with the application of in situ characterization techniques.Our work provides effective guidance for promoting the continuous development,equipping NTOs in safety-critical systems,and lays a foundation for the development of NTO-anode materials in SIBs.
基金financially supported by the National Key Scientific Research Project(2022YFB2502300)China and the National Natural Science Foundation of China(52071085)。
文摘The balance between cationic redox and oxygen redox in layer-structured cathode materials is an important issue for sodium batteries to obtain high energy density and considerable cycle stability.Oxygen redox can contribute extra capacity to increase energy density,but results in lattice instability and capacity fading caused by lattice oxygen gliding and oxygen release.In this work,reversible Mn^(2+)/Mn^(4+)redox is realized in a P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)cathode material with high specific capacity and structure stability via Co substitution.The contribution of oxygen redox is suppressed significantly by reversible Mn^(2+)/Mn^(4+)redox without sacrificing capacity,thus reducing lattice oxygen release and improving the structure stability.Synchrotron X-ray techniques reveal that P3 phase is well maintained in a wide voltage window of 1.5-4.5 V vs.Na^(+)/Na even at 10 C and after long-term cycling.It is disclosed that charge compensation from Co/Mn-ions contributes to the voltage region below 4.2 V and O-ions contribute to the whole voltage range.The synergistic contributions of Mn^(2+)/Mn^(4+),Co^(2+)/Co^(3+),and O^(2-)/(O_n)^(2-)redox in P3-Na_(0.65)Li_(0.2)Co_(0.05)Mn_(0.75)O_(2)lead to a high reversible capacity of 215.0 m A h g^(-1)at 0.1 C with considerable cycle stability.The strategy opens up new opportunities for the design of high capacity cathode materials for rechargeable batteries.
文摘Lithium-ion batteries(LIBs)are used in electric vehicles and portable smart devices,but lithium resources are dwindling and there is an increasing demand which has to be catered for.Sodium ion batteries(SIBs),which are less costly,are a promising replacement for LIBs because of the abundant natural reserves of sodium.The anode of a SIB is a necessary component of the battery but is less understood than the cathode.This review outlines the development of various types of anodes,including carbonbased,metallic and organic,which operate using different reaction mechanisms such as intercalation,alloying and conversion,and considers their challenges and prospects.Strategies for modifying their structures by doping and coating,and also modifying the solid electrolyte interface are discussed.In addition,this review also discusses the challenges encountered by the anode of SIBs and the solutions.
基金financially supported by the National Nature Science Foundation of Jiangsu Province(BK20221259)。
文摘Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electrochemical performance is greatly limited.In this study,a nickel/manganese sulfide material(Ni_(0.96)S_(x)/MnS_(y)-NC)with adjustable sulfur vacancies and heterogeneous hollow spheres was prepared using a simple method.The introduction of a concentration-adjustable sulfur vacancy enables the generation of a heterogeneous interface between bimetallic sulfide and sulfur vacancies.This interface collectively creates an internal electric field,improving the mobility of electrons and ions,increasing the number of electrochemically active sites,and further optimizing the performance of Na~+storage.The direction of electron flow is confirmed by Density functional theory(DFT)calculations.The hollow nano-spherical material provides a buffer for expansion,facilitating rapid transfer kinetics.Our innovative discovery involves the interaction between the ether-based electrolyte and copper foil,leading to the formation of Cu_9S_5,which grafts the active material and copper current collector,reinforcing mechanical supporting.This results in a new heterostructure of Cu_9S_5 with Ni_(0.96)S_(x)/MnS_(y),contributing to the stabilization of structural integrity for long-cycle performance.Therefore,Ni_(0.96)S_(x)/MnS_(y)-NC exhibits excellent electrochemical properties following our modification route.Regarding stability performance,Ni0_(.96)S_(x)/MnS_(y)-NC demonstrates an average decay rate of 0.00944%after 10,000 cycles at an extremely high current density of 10000 mA g^(-1),A full cell with a high capacity of 304.2 mA h g^(-1)was also successfully assembled by using Na_(3)V_(2)(PO_(4))_(3)/C as the cathode.This study explores a novel strategy for interface/vacancy co-modification in the fabrication of high-performance sodium-ion batteries electrode.
文摘Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.
基金financial support from the National Natural Science Foundation of China(No.52074364)。
文摘To clarify the precipitation of silica hydrate from the real desilication solutions of aluminosilicate solid wastes by adding seeds and improve integrated waste utilization,the seeded precipitation was studied using synthesized sodium silicate solution containing different inorganic salt impurities.The results show that sodium chloride,sodium sulfate,sodium carbonate,or calcium chloride can change the siloxy group structure.The number of high-polymeric siloxy groups decreases with increasing sodium chloride or sodium sulfate concentration,which is detrimental to seeded precipitation.Calcium chloride favors the polymerization of silicate ions,and even the chain groups precipitate with the precipitation of high-polymeric sheet and cage-like siloxy groups.The introduced sodium cations in sodium carbonate render a more open network structure of high-polymeric siloxy groups,although the carbonate ions favor the polymerization of siloxy groups.No matter how the four impurities affect the siloxy group structure,the precipitates are always amorphous opal-A silica hydrate.
基金financially supported by National Natural Science Foundation of China(Grans Nos.22179109 and 22005315)Fundamental Research Funds for the Central Universities(SWU120080)Chongqing Key Laboratory of Materials Surface&Interface Science(Project No.KFJJ2002)
文摘Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefore,sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries(SMBs).Herein,a design concept for the incorporation of metal-organic framework(MOF)in polymer matrix(polyvinylidene fluoride-hexafluoropropylene)is practiced to prepare a novel gel polymer electrolyte(PH@MOF polymer-based electrolyte[GPE])and thus to achieve high-performance SMBs.The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na^(+)but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction.A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm^(-2)with areal capacity of 5 mA h cm^(-2)is achieved by symmetric cells based on the resulted GPE while the Na_(3)V_(2)O_(2)(PO_(4))_(2)F@rGO(NVOPF)|PH@MOF|Nacell also displays impressive specific cycling capacity(113.3 mA h g^(-1)at 1 C)and rate capability with considerable capacity retention.