A novel lipid occurred when cyanobacterium Synechocystis sp. PCC 6803 cells were grown in BG-11 medium with glucose applied. This lipid was determined to be a glycolipid, designated glycolipid-x (Glyco-x), by staining...A novel lipid occurred when cyanobacterium Synechocystis sp. PCC 6803 cells were grown in BG-11 medium with glucose applied. This lipid was determined to be a glycolipid, designated glycolipid-x (Glyco-x), by staining with alpha-naphthol and concentrated sulfuric acid. The occurrence of Glyco-x accompanies the disappearance of other lipids, especially DGDG. Glyco-x can also be observed in cells grown in BG-11 medium with the application of other carbon sources: fructose, maltose and lactose. Sodium thiosulfate, an effective scavenger of reactive oxygen intermediates, showed strong capability to inhibit glucose-induced occurrence of Glyco-x. In the presence of 0.3% sodium thiosulfate, Glyco-x could only be detected in cells grown in BG-11 medium with 100 mmol/L glucose applied in late-exponential phase. These results suggest that reactive oxygen species might be involved in the occurrence of Glyco-x in cyanobacterium Synechocystis sp. PCC 6803 cells grown in the presence of glucose.展开更多
A method for the synthesis of diaryl sulfides from aryl halides in polyethylene glycol was reported.Inodorous Na2S2O3·5H2O,which is readily available as a stable salt,is an effective source of sulfur in the prese...A method for the synthesis of diaryl sulfides from aryl halides in polyethylene glycol was reported.Inodorous Na2S2O3·5H2O,which is readily available as a stable salt,is an effective source of sulfur in the presence of Cu I as catalyst.展开更多
Hypothesis: To determine the pharmacokinetics of sodium thiosulfate in the inner ear perilymph following middle ear application in Guinea pigs. Background: Cisplatin chemotherapy is often associated with a dose-depe...Hypothesis: To determine the pharmacokinetics of sodium thiosulfate in the inner ear perilymph following middle ear application in Guinea pigs. Background: Cisplatin chemotherapy is often associated with a dose-dependent high frequency senso- rineural hearing loss. Sodium thiosulfate has been shown to reduce cisplatin-induced ototoxicity when given intravenously, but this may limit the tumoricidal effects of the chemotherapy. Recent animal studies looking at middle ear application of sodium thiosulfate have shown prevention of outer hair cell and hearing loss, but the perilymph pharmacokinetics have not yet been established. Methods: Twenty Guinea pig ears were split into two groups and administered sodium thiosulfate to the middle ear at either a concentration of 250 mg/mL or 50 mg/mL for 30 min. Perilymph samples were then obtained serially through the round window over 6 h. Sodium thiosulfate concentrations were obtained using high-pressure liquid chromatography. Results: The 250 mg/mL group had a maximum perilymph concentration of 7.27 mg/mL (±0.83) that decreased to 0.94 mg/mL (±0.03) over 6 h. The 50 mg/mL group had an initial concentration of 1.63 mg/mL (±0.17) and was undetectable after 1 h. The half-life of sodium thiosulfate within perilymph was 0.74 h. Conclusions: and Relevance: The results of this study show that sodium thiosulfate is capable of diffusing through round window and into the inner ear perilymph. Peak levels decline over several hours after exposure. This has a potential application as a localized therapy in the prevention of cisplatin induced ototoxicity.展开更多
Sodium alkyl thiosulfates(Bunte salts) can be readily reduced to the corresponding disulfides with TiCl4/Sm system in good to excellent yields under mild conditions
A novel technique of flue gas desulphufization (FGD) using industrial sodium sulfide as absorbent is described to remove SO2 in flue gas. The FGD byproduct in this novel technique is sodium thiosuffate (Na2S2O3 ...A novel technique of flue gas desulphufization (FGD) using industrial sodium sulfide as absorbent is described to remove SO2 in flue gas. The FGD byproduct in this novel technique is sodium thiosuffate (Na2S2O3 · 5H2O, Hypo) which can be used as chemical raw material. Optimal operating parameters about this technique have been determined. In order to enhance productive efficiency of sodium thiosulfate, EDTA disodium additive is added into absorption solution to prevent oxidation of sodium thiosulfate. Its optimal concentration is 0. 02 wt. %. The pH value of absorption solution is set in the range of 5 ~ 6.5. Experimental results show that SO2removal efficiency averagely reach 98.72 %. The highest productive efficiency of sodium thiosulfate reaches 83.24 %. The sodium thiosulfate formed during FGD can be separated from saturated absorbent by filtration, concentration and crystallization. The filtrate after separating sodium thiosulfate will be reused as SO2 absorbent by replenishing some fresh sodium sulfide.展开更多
A laboratory-scale well-mixed thermostatic reactor with continuously blasting air was used to investigate the oxidation inhibition of sulfite in dual alkali flue gas desulfurization (FGD) system. The effects of oper...A laboratory-scale well-mixed thermostatic reactor with continuously blasting air was used to investigate the oxidation inhibition of sulfite in dual alkali flue gas desulfurization (FGD) system. The effects of operating parameters such as pH value and catalyst concentration on the oxidation were studied. Sodium thiosulfate was used in the system, and was found that it significantly inhabited the sulfite oxidation. In the absence of catalyst, sodium thiosulfate at 12.67 mmol/L had an inhibition efficiency of approximately 98%. While in the presence of catalyst, sodium thiosulfate at 26.72 mmol/L had an inhibition efficiency less than 85.0%. The oxidation reaction order of sulfite in the sodium thiosulfate was determined to be -1.90 and 4).55 in the absence and presence of the catalyst, respectively. Apparent activation energy of oxidation inhibition was calculated to be 53.9 kJ/mol. Pilot tests showed that the consumption rate of thiosulfate agreed well with the laboratory-scale experimental results.展开更多
Objective To investigate the biochemical changes in rat brain and liver following acute exposure to a lethal dose of cyanide, and its response to treatment of α-ketoglutarate (α-KG) in the absence or presence of s...Objective To investigate the biochemical changes in rat brain and liver following acute exposure to a lethal dose of cyanide, and its response to treatment of α-ketoglutarate (α-KG) in the absence or presence of sodium thiosulfate (STS). Methods Female rats were administered 2.0 LD50 potassium cyanide (KCN; oral) in the absence or presence of pre-treatment (-10 rain), simultaneous treatment (0 rain) or post-treatment (+2-3 min) of α-KG (2.0 g/kg, oral) and/or STS (1.0 g/kg, intraperitoneal, -15 min, 0 rain or + 2-3 min). At the time of onset of signs and symptoms of KCN toxicity (2-4 min) and at the time of death (5-15 min), various parameters particularly akin to oxidative stress viz. cytochrome oxidase (CYTOX), superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH) and oxidized glutathione (GSSG) in brain, and CYTOX, sorbitol dehydrogenase (SDH), alkaline phosphatase (ALP), GSH and GSSG in liver homogenate were measured. Results At both time intervals brain CYTOX, SOD, GPx, and GSH significantly reduced (percent inhibition compared to control) to 24%, 56%, 77%, and 65%, and 44%, 46%, 78%, and 57%, respectively. At the corresponding time points liver CYTOX and GSH reduced to 74% and 63%, and 44% and 68%, respectively. The levels of GSSG in the brain and liver, and hepatic ALP and SDH were unchanged, Pre-treatment and simultaneous treatment of α-KG alone or with STS conferred significant protection on above variables. Post-treatment was effective in restoring the changes in liver but failed to normalize the changes in the brain. Conclusions Oral treatment with α-KG alone or in combination with STS has protective effects on cyanide-induced biochemical alterations in rat brain and liver.展开更多
This study presents the structure and application of dunk tanks in high-level biosafety laboratories.The test methods and sterilization effects of dunk tanks were evaluated by using Bacillus subtilis as indicator.Resu...This study presents the structure and application of dunk tanks in high-level biosafety laboratories.The test methods and sterilization effects of dunk tanks were evaluated by using Bacillus subtilis as indicator.Results showed that sterilization effects of dunk tanks could be achieved by immersing the goods in 0.5%sodium hypochlorite disinfectant solution for 30 min at room temperature.Neutralizer sodium thiosulfate had no effect on the growth of Bacillus subtilis,and thus would not affect the disinfection results of sodium hypochlorite.Furthermore,suggestions for safe operation of dunk tanks are also provided in this study.展开更多
文摘A novel lipid occurred when cyanobacterium Synechocystis sp. PCC 6803 cells were grown in BG-11 medium with glucose applied. This lipid was determined to be a glycolipid, designated glycolipid-x (Glyco-x), by staining with alpha-naphthol and concentrated sulfuric acid. The occurrence of Glyco-x accompanies the disappearance of other lipids, especially DGDG. Glyco-x can also be observed in cells grown in BG-11 medium with the application of other carbon sources: fructose, maltose and lactose. Sodium thiosulfate, an effective scavenger of reactive oxygen intermediates, showed strong capability to inhibit glucose-induced occurrence of Glyco-x. In the presence of 0.3% sodium thiosulfate, Glyco-x could only be detected in cells grown in BG-11 medium with 100 mmol/L glucose applied in late-exponential phase. These results suggest that reactive oxygen species might be involved in the occurrence of Glyco-x in cyanobacterium Synechocystis sp. PCC 6803 cells grown in the presence of glucose.
基金the Persian Gulf University Research Council for generous partial financial support of this study
文摘A method for the synthesis of diaryl sulfides from aryl halides in polyethylene glycol was reported.Inodorous Na2S2O3·5H2O,which is readily available as a stable salt,is an effective source of sulfur in the presence of Cu I as catalyst.
文摘Hypothesis: To determine the pharmacokinetics of sodium thiosulfate in the inner ear perilymph following middle ear application in Guinea pigs. Background: Cisplatin chemotherapy is often associated with a dose-dependent high frequency senso- rineural hearing loss. Sodium thiosulfate has been shown to reduce cisplatin-induced ototoxicity when given intravenously, but this may limit the tumoricidal effects of the chemotherapy. Recent animal studies looking at middle ear application of sodium thiosulfate have shown prevention of outer hair cell and hearing loss, but the perilymph pharmacokinetics have not yet been established. Methods: Twenty Guinea pig ears were split into two groups and administered sodium thiosulfate to the middle ear at either a concentration of 250 mg/mL or 50 mg/mL for 30 min. Perilymph samples were then obtained serially through the round window over 6 h. Sodium thiosulfate concentrations were obtained using high-pressure liquid chromatography. Results: The 250 mg/mL group had a maximum perilymph concentration of 7.27 mg/mL (±0.83) that decreased to 0.94 mg/mL (±0.03) over 6 h. The 50 mg/mL group had an initial concentration of 1.63 mg/mL (±0.17) and was undetectable after 1 h. The half-life of sodium thiosulfate within perilymph was 0.74 h. Conclusions: and Relevance: The results of this study show that sodium thiosulfate is capable of diffusing through round window and into the inner ear perilymph. Peak levels decline over several hours after exposure. This has a potential application as a localized therapy in the prevention of cisplatin induced ototoxicity.
文摘Sodium alkyl thiosulfates(Bunte salts) can be readily reduced to the corresponding disulfides with TiCl4/Sm system in good to excellent yields under mild conditions
基金This research project was sponsored by National Natural Science Foundation (20877026)
文摘A novel technique of flue gas desulphufization (FGD) using industrial sodium sulfide as absorbent is described to remove SO2 in flue gas. The FGD byproduct in this novel technique is sodium thiosuffate (Na2S2O3 · 5H2O, Hypo) which can be used as chemical raw material. Optimal operating parameters about this technique have been determined. In order to enhance productive efficiency of sodium thiosulfate, EDTA disodium additive is added into absorption solution to prevent oxidation of sodium thiosulfate. Its optimal concentration is 0. 02 wt. %. The pH value of absorption solution is set in the range of 5 ~ 6.5. Experimental results show that SO2removal efficiency averagely reach 98.72 %. The highest productive efficiency of sodium thiosulfate reaches 83.24 %. The sodium thiosulfate formed during FGD can be separated from saturated absorbent by filtration, concentration and crystallization. The filtrate after separating sodium thiosulfate will be reused as SO2 absorbent by replenishing some fresh sodium sulfide.
基金Preoject supported by the Hi-Tech Research and Development Program (863) of China (No. 2001AA642030-1)the Key Research Project of Zhejiang Province (No. 2004C23028)New Century Excellent Scholar Program of Ministry of Education of the People's Republic of China (No.NCET-04-0549)
文摘A laboratory-scale well-mixed thermostatic reactor with continuously blasting air was used to investigate the oxidation inhibition of sulfite in dual alkali flue gas desulfurization (FGD) system. The effects of operating parameters such as pH value and catalyst concentration on the oxidation were studied. Sodium thiosulfate was used in the system, and was found that it significantly inhabited the sulfite oxidation. In the absence of catalyst, sodium thiosulfate at 12.67 mmol/L had an inhibition efficiency of approximately 98%. While in the presence of catalyst, sodium thiosulfate at 26.72 mmol/L had an inhibition efficiency less than 85.0%. The oxidation reaction order of sulfite in the sodium thiosulfate was determined to be -1.90 and 4).55 in the absence and presence of the catalyst, respectively. Apparent activation energy of oxidation inhibition was calculated to be 53.9 kJ/mol. Pilot tests showed that the consumption rate of thiosulfate agreed well with the laboratory-scale experimental results.
文摘Objective To investigate the biochemical changes in rat brain and liver following acute exposure to a lethal dose of cyanide, and its response to treatment of α-ketoglutarate (α-KG) in the absence or presence of sodium thiosulfate (STS). Methods Female rats were administered 2.0 LD50 potassium cyanide (KCN; oral) in the absence or presence of pre-treatment (-10 rain), simultaneous treatment (0 rain) or post-treatment (+2-3 min) of α-KG (2.0 g/kg, oral) and/or STS (1.0 g/kg, intraperitoneal, -15 min, 0 rain or + 2-3 min). At the time of onset of signs and symptoms of KCN toxicity (2-4 min) and at the time of death (5-15 min), various parameters particularly akin to oxidative stress viz. cytochrome oxidase (CYTOX), superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH) and oxidized glutathione (GSSG) in brain, and CYTOX, sorbitol dehydrogenase (SDH), alkaline phosphatase (ALP), GSH and GSSG in liver homogenate were measured. Results At both time intervals brain CYTOX, SOD, GPx, and GSH significantly reduced (percent inhibition compared to control) to 24%, 56%, 77%, and 65%, and 44%, 46%, 78%, and 57%, respectively. At the corresponding time points liver CYTOX and GSH reduced to 74% and 63%, and 44% and 68%, respectively. The levels of GSSG in the brain and liver, and hepatic ALP and SDH were unchanged, Pre-treatment and simultaneous treatment of α-KG alone or with STS conferred significant protection on above variables. Post-treatment was effective in restoring the changes in liver but failed to normalize the changes in the brain. Conclusions Oral treatment with α-KG alone or in combination with STS has protective effects on cyanide-induced biochemical alterations in rat brain and liver.
基金supported by the National Key Research and Development Program of China(Project No.2018YFC1200305).
文摘This study presents the structure and application of dunk tanks in high-level biosafety laboratories.The test methods and sterilization effects of dunk tanks were evaluated by using Bacillus subtilis as indicator.Results showed that sterilization effects of dunk tanks could be achieved by immersing the goods in 0.5%sodium hypochlorite disinfectant solution for 30 min at room temperature.Neutralizer sodium thiosulfate had no effect on the growth of Bacillus subtilis,and thus would not affect the disinfection results of sodium hypochlorite.Furthermore,suggestions for safe operation of dunk tanks are also provided in this study.