期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of Competitive Adsorption between Sodium Tripolyphosphate and Naphthalene Superplasticizer on Fluidity of Cement Paste 被引量:7
1
作者 谭洪波 MA Baoguo +2 位作者 LI Xiangguo JIAN Shouwei YANG Hu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第2期334-340,共7页
The adsorption amount, ξ-potential of cement particles and fluidity of cement paste were tested to research the competitive adsorption between naphthalene superplasticizer (FDN) and STPP. The experimental results s... The adsorption amount, ξ-potential of cement particles and fluidity of cement paste were tested to research the competitive adsorption between naphthalene superplasticizer (FDN) and STPP. The experimental results showed that the presence of STPP could significantly improve the fluidity of cement paste and reduce the fluidity loss with FDN. There existed a competitive adsorption between STPP and FDN. STPP and calcium ions formed complexes; they preferentially adsorbed onto surface of cement particles and preempt adsorption points of FDN; and it reduced adsorption amount of FDN. In the absence of STPP, saturation adsorption amount of FDN was 5.93 mg/g; but when the dosage of STPP was 0.1%, it reduced to 4.3 mg/g (about 72.5%). The adsorption amount of FDN was reduced by STPP, but ξ-potential of cement particles enhanced and fluidity of cement paste increased because of strong negative charge effect of the complexes. Adsorption of the complexes would delay Ca^2+ into liquid and inhibit formation of active adsorption points. Then, content of FDN in liquid increased with the addition of STPP and ξ-potential of cement particles became stable. In this way, fluidity loss of cement paste reduced. 展开更多
关键词 sodium tripolyphosphate naphthalene superplasticizer ξ-potential COMPLEX competitive adsorption
下载PDF
Effect of Compounding of Sodium Tripolyphosphate and Super Plasticizers on the Hydration of α-calcium Sulfate Hemihydrate 被引量:3
2
作者 潘伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第4期737-744,共8页
The inhibition and its mechanism of sodium tripolyphosphate (STP) composited with super plasticizers (SPs) on hydration of α-calcium sulfate hemihydrate were studied by setting time, strength, hydration heat, X-r... The inhibition and its mechanism of sodium tripolyphosphate (STP) composited with super plasticizers (SPs) on hydration of α-calcium sulfate hemihydrate were studied by setting time, strength, hydration heat, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electronic probe micro analysis (EPMA), scanning electron microscopy (SEM) and differential scanning calorimeter (DSC) measurements. The experimental results show that compared with STP addition, compositing STP with polycarboxylate (PC) plasticizer, the final setting time is prolonged from 0.5h to 2hs. While formulating STP with naphthalene-based plasticizer (NAP) or sulfonate melamine formaldehyde plasticizer (SMF), the final setting time is reduced to quarter of an hour. Similar changes can also be found in the rate of exothermic hydration and hydration degree. Formulating STP with suitable addition of PC can enhance the strength, while compositing STP and NAP or SMF weakens the strength. Besides, adding STP or STP and SMF, obvious movement (more than 1ev) of binding energy of Ca2p1/2 and Ca2p3/2 is detected. Compared with STP addition, content of the characteristic element (P) of STP is cut down form 1.1% to 0.49% by compositing STP with SMF. Furthermore, as hydration age increases, hydration inhibition in the presence of admixtures weakens and even disappears within 56 h. 展开更多
关键词 α-calcium sulfate hemihydrate HYDRATION sodium tripolyphosphate PLASTICIZER ADSORPTION
下载PDF
Degradation of organic contaminants through the activation of oxygen using zero valent copper coupled with sodium tripolyphosphate under neutral conditions 被引量:2
3
作者 Chengwu Zhang Lishuang Xuan +3 位作者 Jingyi Zhang Fang Yuan Xianglong Kong Chuanyu Qin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第4期375-384,共10页
In this study,sodium tripolyphosphate(STPP)was used to promote the removal of organic pollutants in a zero-valent copper(ZVC)/O2 system under neutral conditions for the first time.20 mg/L p-nitrophenol(PNP)can be comp... In this study,sodium tripolyphosphate(STPP)was used to promote the removal of organic pollutants in a zero-valent copper(ZVC)/O2 system under neutral conditions for the first time.20 mg/L p-nitrophenol(PNP)can be completely decomposed within 120 min in the ZVC/O2/STPP system.The PNP degradation process followed pseudo-first-order kinetics and the degradation rate of PNP gradually increased upon the decreasing ZVC particle size.The optimal pH of the reaction system was 5.0.Our mechanism investigation showed that Cu+generated by ZVC corrosion was the main reducing agent for the activation of 02 to produce ROS.-OH was identified as the only ROS formed during the degradation of PNP and its production pathway was the double-electron activation of O2(O2→H2 O2→·OH).In this process,STPP did not only promote the release of Cu+through its complexation,but also promoted the production of OH by reducing the redox potential of Cu2+/Cu+.In addition,we could initiate and terminate the reaction by controlling the pH.At pH<8.1,ZVC/02/STPP could continuously degrade organic pollutants;at pH>8.1,the reaction was terminated.STPP was recycled to continuously promote the corrosion of ZVC and O2 activation as long as the pH was<8.1.This study provided a new and efficient way for O2 activation and organic contaminants removal. 展开更多
关键词 sodium tripolyphosphate Zero valent copper corrosion Oxygen activation pH control
原文传递
Synthesis and Characterization of Phosphated Konjac Glucomannan Hydrogels 被引量:13
4
作者 Li Gui CHEN Zhi Lan LIU +1 位作者 Ying Jun CHEN Ren Xi ZHUO 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第12期1652-1654,共3页
Konjac glucomannan (KGM) was crosslinked with sodium tripolyphosphate (STPP) to synthesize hydrogels. The crosslinking reaction was confirmed by FT-IR. The results of degradation test show that the hydrogels retai... Konjac glucomannan (KGM) was crosslinked with sodium tripolyphosphate (STPP) to synthesize hydrogels. The crosslinking reaction was confirmed by FT-IR. The results of degradation test show that the hydrogels retain the enzymatic degradation character of KGM and can be degraded for 74.45% in 5 days by cellulase E0240. 展开更多
关键词 Konjac glucomannan sodium tripolyphosphate HYDROGELS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部