期刊文献+
共找到74,474篇文章
< 1 2 250 >
每页显示 20 50 100
Hierarchically Structured Nb_(2)O_5 Microflowers with Enhanced Capacity and Fast-Charging Capability for Flexible Planar Sodium Ion Micro-Supercapacitors 被引量:2
1
作者 Jiaxin Ma Jieqiong Qin +8 位作者 Shuanghao Zheng Yinghua Fu Liping Chi Yaguang Li Cong Dong Bin Li Feifei Xing Haodong Shi Zhong‑Shuai Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期97-109,共13页
Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless... Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics. 展开更多
关键词 Nb_(2)O_5 nanosheets Microflowers sodium ion micro-supercapacitors FLEXIBILITY Energy storage
下载PDF
Manipulating Na occupation and constructing protective film of P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2) as long-term cycle stability cathode for sodium-ion batteries 被引量:1
2
作者 Yiran Sun Pengfei Zhou +7 位作者 Siyu Liu Zhongjun Zhao Yihao Pan Xiangyan Shen Xiaozhong Wu Jinping Zhao Junying Weng Jin Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期603-611,I0013,共10页
P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformati... P2-Na_(0.67)Ni_(0.33)Mn_(0.67)O_(2)(NNMO)is promising cathode material for sodium-ion batteries(SIBs)due to its high specific capacity and fast Na+diffusion rate.Nonetheless,the irreversible P2-O_(2)phase transformation,Na+/vacancy ordering,and transition metal(TM)dissolution seriously damage its cycling stability and restrict its commercialization process.Herein,Na occupation manipulation and interface stabilization are proposed to strengthen the phase structure of NNMO by synergistic Zn/Ti co-doping and introducing lithium difluorophosp(LiPO_(2)F_(2))film-forming electrolyte additive.The Zn/Ti co-doping regulates the occupancy ratio of Nae/Nafat Na sites and disorganizes the Na+/vacancy ordering,resulting in a faster Na+diffusion kinetics and reversible P2-Z phase transition for P2-Na_(0.67)Ni_(0.28)Zn_(0.05)Mn_(0.62)Ti_(0.05)O_(2)(NNZMTO).Meanwhile,the LiPO_(2)F_(2)additive can form homogeneous and ultrathin cathode-electrolyte interphase(CEI)on NNZMTO surface,which can stabilize the NNZMTO-electrolyte interface to prevent TM dissolution,surface structure transformation,and micro-crack generation.Combination studies of in situ and ex situ characterizations and theoretical calculations were used to elucidate the storage mechanism of NNZMTO with Li PO_(2)F_(2)additive.As a result,the NNZMTO displays outstanding capacity retention of 94.44%after 500 cycles at 1C with 0.3 wt%Li PO_(2)F_(2),excellent rate performance of 92.5 mA h g^(-1)at 8C with 0.1 wt%Li PO_(2)F_(2),and remarkable full cell capability.This work highlights the important role of manipulating Na occupation and constructing protective film in the design of layered materials,which provides a promising direction for developing high-performance cathodes for SIBs. 展开更多
关键词 Layered cathode Zn/Ti co-doping na occupation Electrolyte additive sodium-ion batteries
下载PDF
Comparative efficacy of sodium glucose cotransporter-2 inhibitors in the management of type 2 diabetes mellitus:A real-world experience 被引量:1
3
作者 Lubna Islam Dhanya Jose +3 位作者 Mohammed Alkhalifah Dania Blaibel Vishnu Chandrabalan Joseph M Pappachan 《World Journal of Diabetes》 SCIE 2024年第3期463-474,共12页
BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCT... BACKGROUND Sodium glucose cotransporter-2 inhibitors(SGLT-2i)are a class of drugs with modest antidiabetic efficacy,weight loss effect,and cardiovascular benefits as proven by multiple randomised controlled trials(RCTs).However,real-world data on the comparative efficacy and safety of individual SGLT-2i medications is sparse.AIM To study the comparative efficacy and safety of SGLT-2i using real-world clinical data.METHODS We evaluated the comparative efficacy data of 3 SGLT-2i drugs(dapagliflozin,canagliflozin,and empagliflozin)used for treating patients with type 2 diabetes mellitus.Data on the reduction of glycated hemoglobin(HbA1c),body weight,blood pressure(BP),urine albumin creatinine ratio(ACR),and adverse effects were recorded retrospectively.RESULTS Data from 467 patients with a median age of 64(14.8)years,294(62.96%)males and 375(80.5%)Caucasians were analysed.Median diabetes duration was 16.0(9.0)years,and the duration of SGLT-2i use was 3.6(2.1)years.SGLT-2i molecules used were dapagliflozin 10 mg(n=227;48.6%),canagliflozin 300 mg(n=160;34.3%),and empagliflozin 25 mg(n=80;17.1).Baseline median(interquartile range)HbA1c in mmol/mol were:dapagliflozin-78.0(25.3),canagliflozin-80.0(25.5),and empagliflozin-75.0(23.5)respectively.The respective median HbA1c reduction at 12 months and the latest review(just prior to the study)were:66.5(22.8)&69.0(24.0),67.0(16.3)&66.0(28.0),and 67.0(22.5)&66.5(25.8)respectively(P<0.001 for all comparisons from baseline).Significant improvements in body weight(in kilograms)from baseline to study end were noticed with dapagliflozin-101(29.5)to 92.2(25.6),and canagliflozin 100(28.3)to 95.3(27.5)only.Significant reductions in median systolic and diastolic BP,from 144(21)mmHg to 139(23)mmHg;(P=0.015),and from 82(16)mmHg to 78(19)mmHg;(P<0.001)respectively were also observed.A significant reduction of microalbuminuria was observed with canagliflozin only[ACR 14.6(42.6)at baseline to 8.9(23.7)at the study end;P=0.043].Adverse effects of SGLT-2i were as follows:genital thrush and urinary infection-20(8.8%)&17(7.5%)with dapagliflozin;9(5.6%)&5(3.13%)with canagliflozin;and 4(5%)&4(5%)with empagliflozin.Diabetic ketoacidosis was observed in 4(1.8%)with dapagliflozin and 1(0.63%)with canagliflozin.CONCLUSION Treatment of patients with SGLT-2i is associated with statistically significant reductions in HbA1c,body weight,and better than those reported in RCTs,with low side effect profiles.A review of large-scale real-world data is needed to inform better clinical practice decision making. 展开更多
关键词 sodium glucose cotransporter-2 inhibitors Empagliflozin Canagliflozin DAPAGLIFLOZIN Type 2 diabetes mellitus Cardiovascular disease Albumin creatinine ratio DIABESITY
下载PDF
A comparative study for petroleum removal capacities of the bacterial consortia entrapped in sodium alginate,sodium alginate/poly(vinyl alcohol),and bushnell haas agar
4
作者 Sezen Bilen Ozyurek 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期705-715,共11页
The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol... The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies. 展开更多
关键词 Entrapment of bacterial consortia PETROLEUM RemovalBushnell Haas agar sodium alginate sodium alginate/poly(vinyl alcohol)
下载PDF
Na_(3)P interphase reduces Na nucleation energy enabling stable anode-less sodium metal batteries
5
作者 Haizhao Yang Haifeng Lv +8 位作者 En Zhou Xiaohao Ji Chunnian Chen Haolei Yu Zhaowei Sun Dawei Zhang Hongchang Jin Xianghua Kong Hengxing Ji 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期448-455,共8页
Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the ... Sodium metal batteries(SMBs)are rising as viable alternatives to lithium-ion systems due to their superior energy density and sodium's relative abundance.However,SMBs face significant impediments,particularly the exceedingly high negative-to-positive capacity ratios(N/P ratios)which severely encumber energy density and hinder their practical application.Herein,a novel nucleophilic Na_(3)P interphase on aluminum foil has been designed to significantly lower the nucleation energy barrier for sodium atom deposition,resulting in a remarkable reduction of nucleation overpotential and efficient mitigation of dendritic growth at high sodium deposition of 5 mA h cm^(−2).The interphase promotes stable cycling in anode-less SMB configurations with a low N/P ratio of 1.4 and high cathode mass loading of 11.5 mg cm^(−2),and demonstrates a substantial increase in high capacity retention of 92.4%after 500 cycles even under 1 C rate condition.This innovation signifies a promising leap forward in the development of high-energy-density,anode-less SMBs,offering a potential solution to the longstanding issues of cycle stability and energy efficiency. 展开更多
关键词 Anode-less Phosphorus anode Nucleation buffer layer sodium metal Dendrite-free
下载PDF
Fe_(3)O_(4)/Fe/FeS Tri-Heterojunction Node Spawning N-Carbon Nanotube Scaffold Structure for High-Performance Sodium-Ion Battery
6
作者 Yuan Liu Qing Lin +9 位作者 Xiaocui Chen Xufeng Meng Baoxiu Hou Haiyan Liu Shuaihua Zhang Ningzhao Shang Zheng Wang Chaoyue Zhang Jianjun Song Xiaoxian Zhao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期143-152,共10页
The Fe-based anode of sodium-ion batteries attracts much attention due to the abundant source,low-cost,and high specific capacity.However,the low electron and ion transfer rate,poor structural stability,and shuttle ef... The Fe-based anode of sodium-ion batteries attracts much attention due to the abundant source,low-cost,and high specific capacity.However,the low electron and ion transfer rate,poor structural stability,and shuttle effect of NaS_(2)intermediate restrain its further development.Herein,the Fe_(3)O_(4)/Fe/FeS tri-heterojunction node spawned N-carbon nanotube scaffold structure(FHNCS)was designed using the modified MIL-88B(Fe)as a template followed by catalytic growth and sulfidation process.During catalytic growth process,the reduced Fe monomers catalyze the growth of N-doped carbon nanotubes to connect the Fe_(3)O_(4)/Fe/FeS tri-heterojunction node,forming a 3D scaffold structure.Wherein the N-doped carbon promotes the transfer of electrons between Fe_(3)O_(4)/Fe/FeS particles,and the tri-heterojunction facilitates the diffusion of electrons at the interface,to organize a 3D conductive network.The unique scaffold structure provides more active sites and shortens the Na^(+)diffusion path.Meanwhile,the structure exhibits excellent mechanical stability to alleviate the volume expansion during circulation.Furthermore,the Fe in Fe_(3)O_(4)/Fe heterojunction can adjust the dband center of Fe in Fe_(3)O_(4)to enhance the adsorption between Fe_(3)O_(4)and Na2S intermediate,which restrains the shuttle effect.Therefore,the FHNCS demonstrates a high specific capacity of 436 mAh g^(-1)at 0.5 A g^(-1),84.7%and 73.4%of the initial capacities are maintained after 100 cycles at 0.5 A g^(-1)and 1000 cycles at 1.0 A g^(-1).We believe that this strategy gives an inspiration for constructing Fe-based anode with excellent rate capability and cycling stability. 展开更多
关键词 ANODE CORE-SHELL HETEROJUNCTION hollow structure sodium ion batteries
下载PDF
Coated sodium butyrate ameliorates high‑energy and low‑protein diet induced hepatic dysfunction via modulating mitochondrial dynamics, autophagy and apoptosis in laying hens
7
作者 Sasa Miao Tianming Mu +5 位作者 Ru Li Yan Li Wenyan Zhao Jiankui Li Xinyang Dong Xiaoting Zou 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期1190-1206,共17页
Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in... Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens.Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction.Sodium butyrate was demonstrated to modulate hepatic lipid metabolism,alle-viate oxidative stress and improve mitochondrial dysfunction in vitro and mice models.Nevertheless,there is limited existing research on coated sodium butyrate(CSB)to prevent FLHS in laying hens,and whether and how CSB exerts the anti-FLHS effect still needs to be explored.In this experiment,the FLHS model was induced by administering a high-energy low-protein(HELP)diet in laying hens.The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function.Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each,namely,the CON group(normal diet),HELP group(HELP diet),CH500 group(500 mg/kg CSB added to HELP diet)and CH750 group(750 mg/kg CSB added to HELP diet).The duration of the trial encompassed a period of 10 weeks.Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and patho-logical damage,reducing the gene levels of fatty acid synthesis,and promoting the mRNA levels of key enzymes of fatty acid catabolism.CSB reduced oxidative stress induced by the HELP diet,upregulated the activity of GSH-Px and SOD,and decreased the content of MDA and ROS.CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α,IL-1β,and F4/80.In addition,dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response(UPRmt),mitochondrial damage,and decline of ATPase activity.HELP diet decreased the autophagosome formation,and downregulated LC3B but upregulated p62 protein expression,which CSB administration reversed.CSB reduced HELP-induced apoptosis,as indicated by decreases in the Bax/Bcl-2,Caspase-9,Caspase-3,and Cyt C expression levels.Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics,autophagy,and apoptosis in laying hens.Consequently,CSB,as a feed additive,exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism. 展开更多
关键词 AUTOPHAGY Coated sodium butyrate Laying hens Lipid metabolism MITOCHONDRIA
下载PDF
The chance of sodium titanate anode for the practical sodium-ion batteries
8
作者 Feng Chen Haoyu Li +7 位作者 Xianyan Qiao Ruoyang Wang Changyan Hu Ting Chen Yifan Niu Benhe Zhong Zhenguo Wu Xiaodong Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期226-244,共19页
Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alte... Supporting sustainable green energy systems,there is a big demand gap for grid energy storage.Sodiumion storage,especially sodium-ion batteries(SIBs),have advanced significantly and are now emerging as a feasible alternative to the lithium-ion batteries equivalent in large-scale energy storage due to their natural abundance and prospective inexpensive cost.Among various anode materials of SIBs,beneficial properties,such as outstanding stability,great abundance,and environmental friendliness,make sodium titanates(NTOs),one of the most promising anode materials for the rechargeable SIBs.Nevertheless,there are still enormous challenges in application of NTO,owing to its low intrinsic electronic conductivity and collapse of structure.The research on NTOs is still in its infancy;there are few conclusive reviews about the specific function of various modification methods.Herein,we summarize the typical strategies of optimization and analysis the fine structures and fabrication methods of NTO anodes combined with the application of in situ characterization techniques.Our work provides effective guidance for promoting the continuous development,equipping NTOs in safety-critical systems,and lays a foundation for the development of NTO-anode materials in SIBs. 展开更多
关键词 sodium titanates sodium-ion batteries Modification methods Electronic materials ELECTROCHEMISTRY Synthesis
下载PDF
Sulfur vacancies and heterogeneous interfaces promote high performance sodium storage of bimetallic chalcogenide hollow nanospheres
9
作者 Shiyue Cao Xiaoting Xu +2 位作者 Qiming Liu Huijuan Zhu Ting Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期596-610,I0013,共16页
Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electro... Transition metal sulfides have high theoretical capacities and are considered as potential anode materials for sodium-ion batteries.However,due to low inherent conductivity and significant volume expansion,the electrochemical performance is greatly limited.In this study,a nickel/manganese sulfide material(Ni_(0.96)S_(x)/MnS_(y)-NC)with adjustable sulfur vacancies and heterogeneous hollow spheres was prepared using a simple method.The introduction of a concentration-adjustable sulfur vacancy enables the generation of a heterogeneous interface between bimetallic sulfide and sulfur vacancies.This interface collectively creates an internal electric field,improving the mobility of electrons and ions,increasing the number of electrochemically active sites,and further optimizing the performance of Na~+storage.The direction of electron flow is confirmed by Density functional theory(DFT)calculations.The hollow nano-spherical material provides a buffer for expansion,facilitating rapid transfer kinetics.Our innovative discovery involves the interaction between the ether-based electrolyte and copper foil,leading to the formation of Cu_9S_5,which grafts the active material and copper current collector,reinforcing mechanical supporting.This results in a new heterostructure of Cu_9S_5 with Ni_(0.96)S_(x)/MnS_(y),contributing to the stabilization of structural integrity for long-cycle performance.Therefore,Ni_(0.96)S_(x)/MnS_(y)-NC exhibits excellent electrochemical properties following our modification route.Regarding stability performance,Ni0_(.96)S_(x)/MnS_(y)-NC demonstrates an average decay rate of 0.00944%after 10,000 cycles at an extremely high current density of 10000 mA g^(-1),A full cell with a high capacity of 304.2 mA h g^(-1)was also successfully assembled by using Na_(3)V_(2)(PO_(4))_(3)/C as the cathode.This study explores a novel strategy for interface/vacancy co-modification in the fabrication of high-performance sodium-ion batteries electrode. 展开更多
关键词 Sulfur vacancies Heterogeneous interface Interactions sodium ion batteries
下载PDF
Metal-Organic Framework Enabling Poly(Vinylidene Fluoride)-Based Polymer Electrolyte for Dendrite-Free and Long-Lifespan Sodium Metal Batteries
10
作者 Yusi Lei Liang Yue +4 位作者 Yuruo Qi Yubin Niu Shujuan Bao Jie Song Maowen Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期68-76,共9页
Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefor... Sodium dentrite formed by uneven plating/stripping can reduce the utilization of active sodium with poor cyclic stability and,more importantly,cause internal short circuit and lead to thermal runaway and fire.Therefore,sodium dendrites and their related problems seriously hinder the practical application of sodium metal batteries(SMBs).Herein,a design concept for the incorporation of metal-organic framework(MOF)in polymer matrix(polyvinylidene fluoride-hexafluoropropylene)is practiced to prepare a novel gel polymer electrolyte(PH@MOF polymer-based electrolyte[GPE])and thus to achieve high-performance SMBs.The addition of the MOF particles can not only reduce the movement hindrance of polymer chains to promote the transfer of Na^(+)but also anchor anions by virtue of their negative charge to reduce polarization during electrochemical reaction.A stable cycling performance with tiny overpotential for over 800 h at a current density of 5 mA cm^(-2)with areal capacity of 5 mA h cm^(-2)is achieved by symmetric cells based on the resulted GPE while the Na_(3)V_(2)O_(2)(PO_(4))_(2)F@rGO(NVOPF)|PH@MOF|Nacell also displays impressive specific cycling capacity(113.3 mA h g^(-1)at 1 C)and rate capability with considerable capacity retention. 展开更多
关键词 dendrite-free gel polymer electrolyte metal organic framework sodium batteries
下载PDF
Effective removal of chromium,copper,and nickel heavy metal ions from industrial electroplating wastewater by in situ oxidative adsorption using sodium hypochlorite as oxidant and sodium trititanate nanorod as adsorbent
11
作者 Muhammad Tayyab Butt Hengbo Yin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期312-330,共19页
Sodium hypochlorite and synthesized sodium trititanate nanorods(Na_(2)Ti_(3)O_(7),186 nm×1270 nm)were used as the oxidant and adsorbents for in situ oxidative adsorption treatment of actual electroplating wastewa... Sodium hypochlorite and synthesized sodium trititanate nanorods(Na_(2)Ti_(3)O_(7),186 nm×1270 nm)were used as the oxidant and adsorbents for in situ oxidative adsorption treatment of actual electroplating wastewater containing Cr(Ⅵ)(2.6-5.2 mg·L^(-1)),Cu^(2+)(2.7-5.4 mg·L^(-1)),and Ni^(2+)(0.2705-0.541 mg·L^(-1))ions at pH of 8.8-9.1 and 20-60℃.The as-synthesized sodium trititanate nanorods were characterized by XRD,HRTEM,N2 adsorption/desorption,SEM,EDX,and zeta potential techniques.The concentrations of heavy metal ions in wastewater were analyzed by ICP technique.After in situ oxidative adsorption treatment under the concentrations of 25 g·L^(-1) for sodium hypochlorite and 125 mg·L^(-1) for sodium trititanate nanorods at 60℃ for 5 h,the heavy metal ion concentrations could be reduced from initial value of 2.6 to final value of 1.92 mg·L^(-1) for Cr(Ⅵ),3.6 to 0.17 mg·L^(-1) for Cu^(2+),and from 0.2705 to 0.097 mg·L^(-1) for Ni^(2+),respectively.Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions could be effectively removed by the in situ oxidative adsorption method.The in situ oxidative adsorption processes of Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions are satisfactorily simulated by the pseudo-second order adsorption kinetics and Langmuir adsorption isotherm,respectively.Adsorption thermodynamics analyses reveal that the oxidative adsorption processes of Cr(Ⅵ),Cu^(2+) and Ni^(2+) ions are spontaneous and endothermic.The oxidation degree of metalcontained complexes influences the values of thermodynamics functions. 展开更多
关键词 Heavy metals Oxidative adsorption Electroplating wastewater sodium trititanate nanorods nanomaterials Oxidation
下载PDF
Sodium nitroprusside as a signal molecule for up-regulating membrane characteristics,antioxidant defense system to improve flax productivity under water stress
12
作者 N.M.Al-Ashkar B.A.Bakry +2 位作者 H.M.S.El-Bassiouny M.M.S.Abdallah M.S.Sadak 《Oil Crop Science》 CSCD 2024年第3期160-169,共10页
Water stress is a critical environmental adversity that significantly impacts the growth,development,and yield of flax plants.In this study,flax seeds were cultivated under different water irrigation requirements(WIR)... Water stress is a critical environmental adversity that significantly impacts the growth,development,and yield of flax plants.In this study,flax seeds were cultivated under different water irrigation requirements(WIR)(100%,75%,and 50%)to investigate the effects of exogenously supplied nitric oxide(NO)donor sodium nitroprusside(SNP)as foliar treatments at concentrations of 0.0 mmol/L,0.5 mmol/L,1.0 mmol/L,and 2.0 mmol/L.Drought stress led to a significant decrease in plant growth,photosynthetic pigments,yield components such as oil and total carbohydrate percentage.It also resulted in an increase in leaf H2O2 production,lipid peroxidation levels and activities of enzymatic antioxidants including polyphenol oxidase,superoxide dismutase,and nitrate reductase enzymes.However,foliar application of SNP improved photosynthetic pigments and antioxidant defense system which mitigated the negative impact of water stress on growth and yield productivity by reducing oxidative damage caused by reactive oxygen species accumulation.The use of SNP also decreased H_(2)O_(2) accumulation levels,lipid peroxidation levels,and improved membrane stability.SNP treatment at concentration of 2 mmol/L showed superior results compared to other concentrations with extremely significant increases observed in yield characteristics such as oil content,total carbohydrate percentages,and unsaturated fatty acids to saturated fatty acids ratio. 展开更多
关键词 FLAX Fatty acid sodium nitroprusside Antioxidant enzymes YIELD
下载PDF
Alkali Tolerance of Concrete Internal Curing Agent Based on Sodium Carboxymethyl Starch
13
作者 陈梅花 刘荣进 +3 位作者 CHEN Ping JING Daiyan WAN Dandan FU Siyuan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期82-90,共9页
Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using ... Internal curing agents (ICA) based on super absorbent polymer have poor alkali tolerance and reduce the early strength of concrete.An alkali tolerate internal curing agent (CAA-ICA) was designed and prepared by using sodium carboxymethyl starch (CMS) with high hydrophilicity,acrylic acid (AA) containing anionic carboxylic group and acrylamide (AM) containing non-ionic amide group as the main raw materials.The results show that the ratio of CAA-ICA alkali absorption solution is higher than that existing ICA,which solves the low water absorption ratio of the ICA in alkali environment.The water absorption ratio of CAA-ICA in saturated Ca(OH)_(2) solution is 95.8 g·g^(-1),and the alkali tolerance coefficient is 3.4.The application of CAA-ICA in cement-based materials can increase the internal relative humidity and miniaturize the pore structure.The compressive strength of mortar increases up to 12.95%at 28 d,which provids a solution to overcome the reduction of the early strength. 展开更多
关键词 alkali tolerance sodium carboxymethyl starch internal curing agent compressive strength
下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
14
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 SCAFFOLD Biomaterial sodium alginate CHITOSAN GELATIN 3D printing Tissue engineering
下载PDF
Extending the solid solution range of sodium ferric pyrophosphate:Off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)as a novel cathode for sodium‐ion batteries 被引量:1
15
作者 Xiang jun Pu Kunran Yang +6 位作者 Zibing Pan Chunhua Song Yangyang Lai Renjie Li Zheng‐Long Xu Zhongxue Chen Yuliang Cao 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期128-139,共12页
Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on... Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs. 展开更多
关键词 extending solid‐solution range off‐stoichiometric na_(3)Fe_(2.5)(P_(2)O_(7))_(2) sodium‐ion batteries structure-function relationship
下载PDF
Elucidating the enhancement of kaolinite flotation by iron content through density functional theory: A study on sodium oleate adsorption efficiency
16
作者 Lingyun Liu Chuilei Kong +1 位作者 Hongyu Zhao Fangqin Lu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期855-866,共12页
This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydro... This study delves into the intricate relationship between iron(Fe)content in kaolinite and its impact on the adsorption behavior of sodium oleate.The effects of different iron concentrations on adsorption energy,hydrogen bond kinetics and adsorption efficiency were studied through simulation and experimental verification.The results show that the presence of iron in the kaolinite structure significantly improves the adsorption capacity of sodium oleate.Kaolinite samples with high iron content have better adsorption properties,lower adsorption energy levels and shorter and stronger hydrogen bonds than pure kaolinite.The optimal concentration of oleic acid ions for achieving maximum adsorption efficiency was identified as 1.2 mmol/L across different kaolinite samples.At this concentration,the adsorption rates and capacities reach their peak,with Fe-enriched kaolinite samples exhibiting notably higher flotation recovery rates.This optimal concentration represents a balance between sufficient oleic acid ion availability for surface interactions and the prevention of self-aggregation phenomena that could hinder adsorption.This study offers promising avenues for optimizing the flotation process in mineral processing applications. 展开更多
关键词 Iron Influence sodium Oleate Adsorption Kaolinite Surfaces Molecular Interaction Analysis Flotation Efficiency Optimization
下载PDF
Differences in the effects and action modes of gut commensals against dextran sulfate sodium-induced intestinal inflammation
17
作者 Dingwu Qu Zhennan Gu +5 位作者 Saisai Feng Leilei Yu Fengwei Tian Hao Zhang Wei Chen Qixiao Zhai 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1201-1211,共11页
Inflammatory bowel disease(IBD)is a complex relapsing inflammatory disease in the gut and is driven by complicated host-gut microbiome interactions.Gut commensals have shown different functions in IBD prevention and t... Inflammatory bowel disease(IBD)is a complex relapsing inflammatory disease in the gut and is driven by complicated host-gut microbiome interactions.Gut commensals have shown different functions in IBD prevention and treatment.To gain a mechanistic understanding of how different commensals affect intestinal inflammation,we compared the protective effects of 6 probiotics(belonging to the genera Akkermansia,Bifidobacterium,Clostridium,and Enterococcus)on dextran sulfate sodium(DSS)-induced colitis in mice with or without gut microbiota.Anti-inflammatory properties(ratio of interleukin(IL)-10 and IL-12)of these strains were also evaluated in an in vitro mesenteric lymph nodes(MLN)co-culture system.Results showed that 4 probiotics(belonging to the species Bifidobacterium breve,Bifidobacterium bifidum,and Enterococcus faecalis)can alleviate colitis in normal mice.The probiotic strains differed in regulating the intestinal microbiota,cytokines(IL-10,IL-1βand interferon(IFN)-γ),and tight junction function(Zonulin-1 and Occludin).By constrast,Akkermansia muciniphila AH39 and Clostridium butyricum FHuNHHMY49T1 were not protective.Interestingly,B.breve JSNJJNM2 with high anti-inflammatory potential in the MLN model could relieve colitis symptoms in antibiotic cocktail(Abx)-treated mice.Meanwhile,E.faecalis FJSWX25M1induced low levels of cytokines in vitro and showed no beneficial effects.Therefore,we provided insight into the clinical application of probiotics in IBD treatment. 展开更多
关键词 Gut commensals Dextran sulfate sodium(DSS)colitis Intestinal barrier IMMUNOREGULATION
下载PDF
Effect of sodium hyaluronate combined with rehabilitation training on knee joint injury caused by golf
18
作者 Li-Ke Chen Qin-Ming Yu 《World Journal of Clinical Cases》 SCIE 2024年第21期4543-4549,共7页
BACKGROUND In high-intensity sports like golf,knee joints are prone to injury,leading to pain,limited mobility,and decreased quality of life.Traditional treatment methods typically involve rehabilitation exercises,but... BACKGROUND In high-intensity sports like golf,knee joints are prone to injury,leading to pain,limited mobility,and decreased quality of life.Traditional treatment methods typically involve rehabilitation exercises,but their effectiveness may be limited.In recent years,sodium hyaluronate has emerged as a widely used biomedical material in the treatment of joint diseases.AIM To explore the effect of sodium hyaluronate combined with rehabilitation training on pain degree,flexion range of motion and motor function of knee joint injured by golf.METHODS Eighty patients with knee joint injury caused by golf were randomly divided into control(group B)and observation group(group A).The group B was treated with rehabilitation training,and the group A was treated with sodium hyaluronate combined with rehabilitation training.The clinical efficacy,range of motion and function of knee joint,quality of life and inflammatory factors were compared.RESULTS The excellent and good rate of rehabilitation in the group A was raised than group B.At 6 weeks and 3 months after treatment,the range of motion of the two groups was raised than that before treatment,and that of the group A was raised than group B.After treatment,the scores of Lysholm and International Knee Documentation Committee(IKDC)in the group A were raised,and those in the group A were raised than group B.The VAS score of the two groups was reduced than that of the group B,and the SF-36 score of the group A was reduced than group B.The interleukin(IL)-1β,IL-8 and tumor necrosis factor-αin the two groups were reduced,and those in the group A were reduced than group B.CONCLUSION Sodium hyaluronate combined with rehabilitation training has a good clinical effect in the treatment of patients with knee joint injury caused by golf,which relieve pain,maintain knee joint function and improve patients'life quality. 展开更多
关键词 sodium hyaluronate Golf sport Knee joint injury Pain degree Motor function
下载PDF
Fabrication of Core-Shell Hydrogel Bead Based on Sodium Alginate and Chitosan for Methylene Blue Adsorption
19
作者 Xiaoyu Chen 《Journal of Renewable Materials》 EI CAS 2024年第4期815-826,共12页
A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions.The core,made of sodium alginate-g-polyacrylamide and attapulgite nanofibers,was cross-linked by Calci... A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions.The core,made of sodium alginate-g-polyacrylamide and attapulgite nanofibers,was cross-linked by Calcium ions(Ca^(2+)).The shell,composed of a chitosan/activated carbon mixture,was then coated onto the core.Fourier transform infrared spectroscopy confirmed the grafting polymerization of acrylamide onto sodium alginate.Scanning electron microscopy images showed the core-shell structure.The core exhibited a high water uptake ratio,facilitating the diffusion of methylene blue into the core.During the diffusion process,the methylene blue was first adsorbed by the shell and then further adsorbed by the core.Adsorption tests showed that the coreshell structure had a larger adsorption capacity than the core alone.The shell effectively enhanced the adsorption capacity to methylene blue compared to the single core.Methylene blue was adsorbed by activated carbon and chitosan in the shell,and the residual methylene blue diffused into the core and was further adsorbed. 展开更多
关键词 Core-shell structure hydrogel bead attapulgite nanofiber sodium alginate POLYACRYLAMIDE methylene blue adsorption material
下载PDF
Delving into the dissimilarities in electrochemical performance and underlying mechanisms for sodium and potassium ion storage in N-doped carbon-encapsulated metallic Cu_(2)Se nanocubes
20
作者 Xinyu Wang Yanan Xu +4 位作者 Xiaofeng Liu Lei Tan Huaiqiang Gu Xin Du Dan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期336-347,I0008,共13页
The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical perfo... The large volumetric variations experienced by metal selenides within conversion reaction result in inferior rate capability and cycling stability,ultimately hindering the achievement of superior electrochemical performance.Herein,metallic Cu_(2)Se encapsulated with N-doped carbon(Cu_(2)Se@NC)was prepared using Cu_(2)O nanocubes as templates through a combination of dopamine polymerization and hightemperature selenization.The unique nanocubic structure and uniform N-doped carbon coating could shorten the ion transport distance,accelerate electron/charge diffusion,and suppress volume variation,ultimately ensuring Cu_(2)Se@NC with excellent electrochemical performance in sodium ion batteries(SIBs)and potassium ion batteries(PIBs).The composite exhibited excellent rate performance(187.7 mA h g^(-1)at 50 A g^(-1)in SIBs and 179.4 mA h g^(-1)at 5 A g^(-1)in PIBs)and cyclic stability(246,8 mA h g^(-1)at 10 A g^(-1)in SIBs over 2500 cycles).The reaction mechanism of intercalation combined with conversion in both SIBs and PIBs was disclosed by in situ X-ray diffraction(XRD)and ex situ transmission electron microscope(TEM).In particular,the final products in PIBs of K_(2)Se and K_(2)Se_(3)species were determined after discharging,which is different from that in SIBs with the final species of Na_(2)Se.The density functional theory calculation showed that carbon induces strong coupling and charge interactions with Cu_(2)Se,leading to the introduction of built-in electric field on heterojunction to improve electron mobility.Significantly,the theoretical calculations discovered that the underlying cause for the relatively superior rate capability in SIBs to that in PIBs is the agile Na~+diffusion with low energy barrier and moderate adsorption energy.These findings offer theoretical support for in-depth understanding of the performance differences of Cu-based materials in different ion storage systems. 展开更多
关键词 Cu_(2)Se nanocubes DFT calculations Ion storage mechanism Potassium ion batteries sodium ion batteries
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部