Soft starters are effective devices used to provide overload protection for motors from large mechanical shocks during the start-up period.However,existing soft starters require additional power supplies,sensors,and c...Soft starters are effective devices used to provide overload protection for motors from large mechanical shocks during the start-up period.However,existing soft starters require additional power supplies,sensors,and complex control elements that pose serious challenges to the integration,versatility,and operability of mechanical transmission system.Herein,we propose a newly soft starter based on the triboelectric nanogenerator(TENG)and electrorheological fluid(ERF)to realize a self-powered mechanical transmission system.Both ERF’s rheological characteristic and the baffle structure play a role in the torque of device.Driven by TENG,the soft starter with optimized baffle achieves a 715%growth in transmission torque compared to that of the device without baffle.And a smooth start is obtained with transmission speeds ranging from 0%to 100%.In application demonstration,this triboelectric soft starter(TSS)has the capacity to gain a smooth operation of the high-speed motor.In contrast,the direct start generates an overshoot,leading to a break in the conveyor belt.The TSS designed in this work with the advantages of self-powered,highly integrated,easy to operate,and low cost,provides a prospective strategy for broadening the application of TENG in mechanical transmission systems.展开更多
AIM To investigate the effect of Hemp seed soft capsule(HSCC) on colonic ion transport and its related mechanisms in constipation rats.METHODS Sprague-Dawley male rats were randomly divided into three groups: normal g...AIM To investigate the effect of Hemp seed soft capsule(HSCC) on colonic ion transport and its related mechanisms in constipation rats.METHODS Sprague-Dawley male rats were randomly divided into three groups: normal group, constipation group and HSSC group. Rats in the constipation and HSSC groups were administrated loperamide 3 mg/kg per day orally for 12 d to induce the constipation model. Then, the HSSC group was given HSSC 0.126 g/kg per day by gavage for 7 d. The normal and constipation groups were treated with distilled water. After the treatment, the fecal wet weight and water content were measured. The basal short-circuit current(Isc) and resistance were measured by an Ussing Chamber. Besides the in vivo drug delivery experiment above, an in vitro drug application experiment was also conducted. The accumulative concentrations of HSSC(0.1 mg/m L, 0.5 mg/m L, 1.0 mg/m L, 2.5 mg/m L, 5.0 mg/m L, 10.0 mg/m L and 25.0 mg/m L) were added to the normal isolatedcolonic mucosa and the Isc was recorded. Further, after the application of either ion(Cl^-or HCO_3^-) substitution, ion channel-related inhibitor(N-phenylanthranilic acid, glybenclamide, 4,4-diisothiocyano-2,2-stilbenedisulfonic acid or bumetanide) or neural pathway inhibitor [tetrodotoxin(TTX), atropine, or hexamethonium], the Isc induced by HSSC was also measured. RESULTS In the constipation group, the fecal wet weight and the water content were decreased in comparison with the normal group(P < 0.01). After the treatment with HSSC, the fecal wet weight and the water content in the HSSC group were increased, compared with the constipation group(P < 0.01). In the constipation group, the basal Isc was decreased and resistance was increased, in comparison with the normal group(P < 0.01). After the treatment with HSSC, the basal Isc was increased(P < 0.05) and resistance was decreased(P < 0.01) in the HSSC group compared with the constipation group. In the in vitro experiment, beginning with the concentration of 1.0 mg/m L, differences in Isc were found between the experimental mucosa(with HSSC added) and control mucosa. The Isc of experimental mucosa was higher than that of control mucosa under the same concentration(1.0 mg/m L, P < 0.05; 2.5-25 mg/m L, P < 0.01). After the Cl^-or HCO_3^-removal and pretreated with different inhibitors(c AMPdependent and Ca^(2+)-dependent Cl^-channels, Na^+-K^+-2 Cl^-cotransporter(NKCC), Na^+-HCO_3^-cotransporter or Cl^-/HCO_3^-exchanger inhibitor), there were differences between experimental mucosa and control mucosa; the Isc of experimental mucosa was lower than that of control mucosa under the same concentration(P < 0.05). Meanwhile, after pretreatment with neural pathway inhibitor(TTX, atropine, or hexamethonium), there were no differences between experimental mucosa and control mucosa under the same concentration(P > 0.05).CONCLUSION HSSC ameliorates constipation by increasing colonic secretion, which is mediated via the coaction of c AMPdependent and Ca^(2+)-dependent Cl^-channels, NKCC, Na^+-HCO_3^-cotransporter or Cl^-/HCO_3^-exchanger.展开更多
针对10 kV供电高压主排水泵当前大多使用矿用高压真空电磁起动器存在启动机械冲击大、对电网电压冲击大、水泵和管路维护量大的问题,提出应用10 k V软起动器解决此技术难题。阐述了10 kV软起动器的工作原理、主要技术参数、技术特点;分...针对10 kV供电高压主排水泵当前大多使用矿用高压真空电磁起动器存在启动机械冲击大、对电网电压冲击大、水泵和管路维护量大的问题,提出应用10 k V软起动器解决此技术难题。阐述了10 kV软起动器的工作原理、主要技术参数、技术特点;分析了实际应用情况,通过应用证明该软起动器起动平稳、冲击小、使用方便、适应性强,可满足10 k V供电的主排水泵使用。展开更多
基金Guo,H.Y.want to acknowledge the support from the National Key Research and Development Program(No.2021YFA1201602)the Graduate Research and Innovation Foundation of Chongqing,China(No.CYB22047)+3 种基金the National Natural Science Foundation of China(NSFC)(Nos.62004017 and U21A20147)This research was also supported by the Scientific and Technology Research Program of Chongqing Municipal Education Commission(Nos.KJQN202100522 and KJQN202200514)the Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX0746)the Dr.“Through Train”Scientific Research Program(No.CSTB2022BSXM-JCX0091).
文摘Soft starters are effective devices used to provide overload protection for motors from large mechanical shocks during the start-up period.However,existing soft starters require additional power supplies,sensors,and complex control elements that pose serious challenges to the integration,versatility,and operability of mechanical transmission system.Herein,we propose a newly soft starter based on the triboelectric nanogenerator(TENG)and electrorheological fluid(ERF)to realize a self-powered mechanical transmission system.Both ERF’s rheological characteristic and the baffle structure play a role in the torque of device.Driven by TENG,the soft starter with optimized baffle achieves a 715%growth in transmission torque compared to that of the device without baffle.And a smooth start is obtained with transmission speeds ranging from 0%to 100%.In application demonstration,this triboelectric soft starter(TSS)has the capacity to gain a smooth operation of the high-speed motor.In contrast,the direct start generates an overshoot,leading to a break in the conveyor belt.The TSS designed in this work with the advantages of self-powered,highly integrated,easy to operate,and low cost,provides a prospective strategy for broadening the application of TENG in mechanical transmission systems.
基金Supported by the Clinical Medicine Development Project of Beijing Municipal Administration of Hospitals,No.ZYLX201411
文摘AIM To investigate the effect of Hemp seed soft capsule(HSCC) on colonic ion transport and its related mechanisms in constipation rats.METHODS Sprague-Dawley male rats were randomly divided into three groups: normal group, constipation group and HSSC group. Rats in the constipation and HSSC groups were administrated loperamide 3 mg/kg per day orally for 12 d to induce the constipation model. Then, the HSSC group was given HSSC 0.126 g/kg per day by gavage for 7 d. The normal and constipation groups were treated with distilled water. After the treatment, the fecal wet weight and water content were measured. The basal short-circuit current(Isc) and resistance were measured by an Ussing Chamber. Besides the in vivo drug delivery experiment above, an in vitro drug application experiment was also conducted. The accumulative concentrations of HSSC(0.1 mg/m L, 0.5 mg/m L, 1.0 mg/m L, 2.5 mg/m L, 5.0 mg/m L, 10.0 mg/m L and 25.0 mg/m L) were added to the normal isolatedcolonic mucosa and the Isc was recorded. Further, after the application of either ion(Cl^-or HCO_3^-) substitution, ion channel-related inhibitor(N-phenylanthranilic acid, glybenclamide, 4,4-diisothiocyano-2,2-stilbenedisulfonic acid or bumetanide) or neural pathway inhibitor [tetrodotoxin(TTX), atropine, or hexamethonium], the Isc induced by HSSC was also measured. RESULTS In the constipation group, the fecal wet weight and the water content were decreased in comparison with the normal group(P < 0.01). After the treatment with HSSC, the fecal wet weight and the water content in the HSSC group were increased, compared with the constipation group(P < 0.01). In the constipation group, the basal Isc was decreased and resistance was increased, in comparison with the normal group(P < 0.01). After the treatment with HSSC, the basal Isc was increased(P < 0.05) and resistance was decreased(P < 0.01) in the HSSC group compared with the constipation group. In the in vitro experiment, beginning with the concentration of 1.0 mg/m L, differences in Isc were found between the experimental mucosa(with HSSC added) and control mucosa. The Isc of experimental mucosa was higher than that of control mucosa under the same concentration(1.0 mg/m L, P < 0.05; 2.5-25 mg/m L, P < 0.01). After the Cl^-or HCO_3^-removal and pretreated with different inhibitors(c AMPdependent and Ca^(2+)-dependent Cl^-channels, Na^+-K^+-2 Cl^-cotransporter(NKCC), Na^+-HCO_3^-cotransporter or Cl^-/HCO_3^-exchanger inhibitor), there were differences between experimental mucosa and control mucosa; the Isc of experimental mucosa was lower than that of control mucosa under the same concentration(P < 0.05). Meanwhile, after pretreatment with neural pathway inhibitor(TTX, atropine, or hexamethonium), there were no differences between experimental mucosa and control mucosa under the same concentration(P > 0.05).CONCLUSION HSSC ameliorates constipation by increasing colonic secretion, which is mediated via the coaction of c AMPdependent and Ca^(2+)-dependent Cl^-channels, NKCC, Na^+-HCO_3^-cotransporter or Cl^-/HCO_3^-exchanger.
文摘针对10 kV供电高压主排水泵当前大多使用矿用高压真空电磁起动器存在启动机械冲击大、对电网电压冲击大、水泵和管路维护量大的问题,提出应用10 k V软起动器解决此技术难题。阐述了10 kV软起动器的工作原理、主要技术参数、技术特点;分析了实际应用情况,通过应用证明该软起动器起动平稳、冲击小、使用方便、适应性强,可满足10 k V供电的主排水泵使用。