This paper focuses on the formation mechanism of fractures induced by excavation of a gallery in soft sedimentary rocks in the Horonobe area of Japan. Detailed fracture mapping of the gallery indicates that the fractu...This paper focuses on the formation mechanism of fractures induced by excavation of a gallery in soft sedimentary rocks in the Horonobe area of Japan. Detailed fracture mapping of the gallery indicates that the fractures consist of both pre-existing shear fractures and excavation damaged zone (EDZ) fractures. EDZ fractures correspond to weak planes associated with bedding planes or transgranular cracks. The EDZ fractures terminate against pre-existing shear fractures. Therefore, even for excavations in soft sedimentary rocks, formation of the EDZ fractures are controlled by pre-existing fractures and earlier weak planes.展开更多
The aim of this study was to evaluate the effectiveness of BM (basement membrane) and SIS (small intestine submucosa) composite extracellular matrix staple line reinforcement in surgical procedures through finite elem...The aim of this study was to evaluate the effectiveness of BM (basement membrane) and SIS (small intestine submucosa) composite extracellular matrix staple line reinforcement in surgical procedures through finite element modelling simulations and leak-proof performance experiments. The mechanical analyses of soft tissues with and without staple line reinforcement were performed by establishing finite element models of three tissues, namely, stomach, intestine and lungs, under the use scenarios of different anastomosis staple models;and the leak-proof performance of the staple line reinforcement was evaluated by simulating leak-proof experiments of gastric incision margins, intestinal sections, and lung incision margins in vitro. The results showed that the equivalent average stresses of the staple line reinforcement were increased by 20 kPa-68 kPa in gastric and intestinal tissues, and 8 kPa-22 kPa in lung tissues. and that the BM and SIS composite extracellular matrix staple line reinforcement could strengthen the anastomotic structure, and at the same time disperse the high stresses of the anastomosed tissues, which could effectively reduce the postoperative complications such as anastomotic bleeding and anastomotic leakage, and provide a safer and more effective optimized design for surgical mechanical anastomosis. It can effectively reduce postoperative complications such as anastomotic bleeding and anastomotic leakage, and provide a safer and more effective optimized design for surgical mechanical anastomosis.展开更多
Haloacetamides(HAMs) are cytotoxic, genotoxic, and mutagenic byproducts of drinking water disinfection. They are soft electrophilic compounds that form covalent bonds with the free thiol/thiolate in cysteine residue...Haloacetamides(HAMs) are cytotoxic, genotoxic, and mutagenic byproducts of drinking water disinfection. They are soft electrophilic compounds that form covalent bonds with the free thiol/thiolate in cysteine residues through an S_N2 reaction mechanism.Toxicity of the monohalogenated HAMs(iodoacetamide, IAM; bromoacetamide, BAM;or chloroacetamide, CAM) varied depending on the halogen substituent. The aim of this research was to investigate how the halogen atom affects the reactivity and toxicological properties of HAMs, measured as induction of oxidative/electrophilic stress response and genotoxicity. Additionally, we wanted to determine how well in silico estimates of electrophilic softness matched thiol/thiolate reactivity and in vitro toxicological endpoints.Each of the HAMs significantly induced nuclear Rad51 accumulation and ARE signaling activity compared to a negative control. The rank order of effect was IAM 〉 BAM 〉 CAM for Rad51, and BAM ≈ IAM 〉 CAM for ARE. In general, electrophilic softness and in chemico thiol/thiolate reactivity provided a qualitative indicator of toxicity, as the softer electrophiles IAM and BAM were more thiol/thiolate reactive and were more toxic than CAM.展开更多
文摘This paper focuses on the formation mechanism of fractures induced by excavation of a gallery in soft sedimentary rocks in the Horonobe area of Japan. Detailed fracture mapping of the gallery indicates that the fractures consist of both pre-existing shear fractures and excavation damaged zone (EDZ) fractures. EDZ fractures correspond to weak planes associated with bedding planes or transgranular cracks. The EDZ fractures terminate against pre-existing shear fractures. Therefore, even for excavations in soft sedimentary rocks, formation of the EDZ fractures are controlled by pre-existing fractures and earlier weak planes.
文摘The aim of this study was to evaluate the effectiveness of BM (basement membrane) and SIS (small intestine submucosa) composite extracellular matrix staple line reinforcement in surgical procedures through finite element modelling simulations and leak-proof performance experiments. The mechanical analyses of soft tissues with and without staple line reinforcement were performed by establishing finite element models of three tissues, namely, stomach, intestine and lungs, under the use scenarios of different anastomosis staple models;and the leak-proof performance of the staple line reinforcement was evaluated by simulating leak-proof experiments of gastric incision margins, intestinal sections, and lung incision margins in vitro. The results showed that the equivalent average stresses of the staple line reinforcement were increased by 20 kPa-68 kPa in gastric and intestinal tissues, and 8 kPa-22 kPa in lung tissues. and that the BM and SIS composite extracellular matrix staple line reinforcement could strengthen the anastomotic structure, and at the same time disperse the high stresses of the anastomosed tissues, which could effectively reduce the postoperative complications such as anastomotic bleeding and anastomotic leakage, and provide a safer and more effective optimized design for surgical mechanical anastomosis. It can effectively reduce postoperative complications such as anastomotic bleeding and anastomotic leakage, and provide a safer and more effective optimized design for surgical mechanical anastomosis.
基金partial support from the U.S.Army Engineer Research and Development Center and the Army Environmental Quality Technology program, CESU W9132T-16-2-0005 (MJP)partly supported by the interagency agreement IAG #NTR 12003 from the National Institute of Environmental Health Sciences/Division of the National Toxicology Program to the National Center for Advancing Translational Sciences, National Institutes of Health
文摘Haloacetamides(HAMs) are cytotoxic, genotoxic, and mutagenic byproducts of drinking water disinfection. They are soft electrophilic compounds that form covalent bonds with the free thiol/thiolate in cysteine residues through an S_N2 reaction mechanism.Toxicity of the monohalogenated HAMs(iodoacetamide, IAM; bromoacetamide, BAM;or chloroacetamide, CAM) varied depending on the halogen substituent. The aim of this research was to investigate how the halogen atom affects the reactivity and toxicological properties of HAMs, measured as induction of oxidative/electrophilic stress response and genotoxicity. Additionally, we wanted to determine how well in silico estimates of electrophilic softness matched thiol/thiolate reactivity and in vitro toxicological endpoints.Each of the HAMs significantly induced nuclear Rad51 accumulation and ARE signaling activity compared to a negative control. The rank order of effect was IAM 〉 BAM 〉 CAM for Rad51, and BAM ≈ IAM 〉 CAM for ARE. In general, electrophilic softness and in chemico thiol/thiolate reactivity provided a qualitative indicator of toxicity, as the softer electrophiles IAM and BAM were more thiol/thiolate reactive and were more toxic than CAM.