期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Failure mechanism of Mesozoic soft rock roadway in Shajihai coal mine and its surrounding rock control 被引量:7
1
作者 Yuan Yue Zhu Yongjian +1 位作者 Wang Weijun Yu Weijian 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期853-858,共6页
In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,the... In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,theoretical analysis, mineral composition test, microstructure test, water-physical property test and field experiments were carried out. And we revealed the compound failure mechanism of Mesozoic soft rock roadway in Shajihai mining area, namely the molecule expansion-shear slip of weak structural plane-construction disturbance. On this basis, the coupling support technology whose core is constant resistance with large deformation bolt was proposed. The feature of this supporting technology is that a new type of structural composite material was used, which makes the supporting system not only has the ideal deformation characteristics, but also has high supporting resistance. Thus the fully release of plastic energy within surrounding rock and reasonable control of the thickness of the plastic ring were realized. Then the differential deformation between the surrounding rock and support was eliminated by the secondary coupling support of bolt–mesh–cable, and the bolt with high strength was applied in the base angle to control floor. Eventually the collaborative bearing system of surrounding rock–support was formed. Through field tests the validity and rationality of support was also verified. 展开更多
关键词 Mesozoic soft rock failure mechanism Constant resistance with large deformationsupport Control measures Collaborative bearing
下载PDF
Numerical simulation study of the failure evolution process and failure mode of surrounding rock in deep soft rock roadways 被引量:15
2
作者 Meng Qingbin Han Lijun +3 位作者 Xiao Yu Li Hao Wen Shengyong Zhang Jian 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期209-221,共13页
Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured ... Based on the safety coefficient method,which assigns rock failure criteria to calculate the rock mass unit,the safety coefficient contour of surrounding rock is plotted to judge the distribution form of the fractured zone in the roadway.This will provide the basis numerical simulation to calculate the surrounding rock fractured zone in a roadway.Using the single factor and multi-factor orthogonal test method,the evolution law of roadway surrounding rock displacements,plastic zone and stress distribution under different conditions is studied.It reveals the roadway surrounding rock burst evolution process,and obtains five kinds of failure modes in deep soft rock roadway.Using the fuzzy mathematics clustering analysis method,the deep soft surrounding rock failure model in Zhujixi mine can be classified and patterns recognized.Compared to the identification results and the results detected by geological radar of surrounding rock loose circle,the reliability of the results of the pattern recognition is verified and lays the foundations for the support design of deep soft rock roadways. 展开更多
关键词 Deep soft rock roadway Evolutionary process failure model Numerical simulation Model recognition
下载PDF
Failure mechanism and control technology of water-immersed roadway in high-stress and soft rock in a deep mine 被引量:11
3
作者 Yang Renshu Li Yongliang +3 位作者 Guo Dongming Yao Lan Yang Tongmao Li Taotao 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期245-252,共8页
Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering backg... Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs. 展开更多
关键词 High stress and soft rock Water immersion failure mechanism Large and small structures Rework control
下载PDF
Numerical modeling of failure mechanisms in phyllite mine slopes in Brazil 被引量:6
4
作者 Lana Milene Sabino 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期777-782,共6页
This paper presents three case studies comprising failure mechanisms in phyllite mine slopes at Quadrila- tero Ferrifero, State of Minas Gerais, Brazil. Numerical modeling techniques were used in this study. Fail- ure... This paper presents three case studies comprising failure mechanisms in phyllite mine slopes at Quadrila- tero Ferrifero, State of Minas Gerais, Brazil. Numerical modeling techniques were used in this study. Fail- ure mechanisms involving discontinuities sub parallel to the main foliation are very common in these mines. Besides, failure through the rock material has also been observed due to the low strength of phyl- lites in this site. Results of this work permitted to establish unknown geotechnical parameters which have significant influence in failure processes, like the in situ stress field and the discontinuity stiffness. 展开更多
关键词 soft rocks Mine slopes Numerical modeling failure mechanisms
下载PDF
Micromechanical Behavior and Failure Mechanism of F / B Multi-phase High Performance Steel 被引量:7
5
作者 Cun-jiang TANG Shi-long LIU Cheng-jia SHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第5期489-494,共6页
The deformation and micro-voids formation mechanisms in ferrite / bainite( F / B) multi-phase steel with the volume fraction of bainite less than 50% were studied by numerical simulation and experimental observation... The deformation and micro-voids formation mechanisms in ferrite / bainite( F / B) multi-phase steel with the volume fraction of bainite less than 50% were studied by numerical simulation and experimental observation. The results show that the micro-strain concentrates at the soft / hard phase( F / B) interface in the multi-phase steel,which should be correlated with the mechanism of incoordinate deformation. During the necking of the steel,the micro-voids initially form around the F / B interface,which also form in ferrite and bainite with the severe strain. The micro-voids in bainite are more dense and finer than those in ferrite. The failure mechanism of bainite is the coalescence of micro-voids,and the failure mechanism of ferrite is the growth and tearing of micro-voids. Due to the different failure mechanisms of ferrite and bainite,a suitable part of soft phase would be beneficial to the capability of anti-failure of F / B multi-phase steel during the ductile fracture. 展开更多
关键词 ferrite / bainite multi-phase steel numerical simulation ferrite / bainite interface micro-strain micro-void failure mechanism soft phase
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部