We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and ...We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and a continuous straintuning sample holder are discussed. An optically detected magnetic resonance protocol utilized in the imaging is described.In order to show the reliability of this microscope, the strain conduction is estimated with finite element simulation, and xray diffraction is required for calibration when freestanding crystal films are under consideration. A magnetic imaging result is displayed to demonstrate the nano-scale imaging capability. The microscope presented in this work is helpful in studying strain-coupled magnetic physics such as magnetic phase transition under strain and strain-tuned cycloidal orientation tilting.展开更多
Survival at tumor recurrence in soft matter, after chemotherapy, is assessed by RNA folding. It is shown that this recurrence is starting with development of a fluidlike globule;it changes the energy of soft matter;it...Survival at tumor recurrence in soft matter, after chemotherapy, is assessed by RNA folding. It is shown that this recurrence is starting with development of a fluidlike globule;it changes the energy of soft matter;it proceeds as a resonant mixing;and at the end it causes diffusion. This diffusion is interpreted as metastasis in soft matter. A tumor memory is designed for its recurrence oscillations. These oscillations are marked as positive or negative according to their influence on life stabilization or destabilization. It is demonstrated that a tumor memorizes two types of recurrences. The intensity of chemotherapy in soft matter for a tumor with such memory is obtained. Survival at tumor recurrence in soft matter, after chemotherapy, is assigned to one of the five regions of the phase diagram of the “thermalized” tumor by microenvironment. To each of these regions is collated a breast cancer survival class. It is found that the survival at tumor recurrence in soft matter, after chemotherapy, well represents actual survival of 32 patients with breast cancer.展开更多
When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by usin...When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by using the solute based Lagrangian scheme which was proposed by us recently. In this scheme, the process of the gelation(i.e., the change from sol to gel) can be naturally incorporated in the diffusion equation. Effects of the elasticity of the skin phase, the evaporation rate of the solvents, and the initial concentration of the solutions are discussed. Moreover, the condition for the skin formation is provided.展开更多
<span style="font-family:Verdana;">The paper reassesse</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family...<span style="font-family:Verdana;">The paper reassesse</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> a survival at tumor recurrence in soft matter.</span></span></span><span><span><span style="font-size:11.0pt;"> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">First, the </span><span style="font-family:Verdana;">stability of structural motifs</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">under shear in clusters of dipolar spheres is</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> characterized.</span><span style="font-family:Verdana;"> Next, there are introduced transitions between polymer</span><span style="font-family:Verdana;"> knots and </span><span style="font-family:Verdana;">rhythms of these transitions are obtained. </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">sensor is built for these</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> rhythms. Treatment, with a tensile force protocol, is modeled, wh</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">en</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the tu</span><span style="font-family:Verdana;">mor in soft matter is observed by the above sensor. Survival probability, at</span><span style="font-family:Verdana;"> tumor recurrence in soft matter, is defined for the treatment with a tensile force protocol.</span><span style="font-family:Verdana;"> It is stated that the survival probability at a tensile force protocol</span><span style="font-family:Verdana;"> treat</span><span style="font-family:Verdana;">ment in</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">soft matter confirms or specifies the prognostic survival of 32 patients with</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> breast cancer.</span></span></span>展开更多
The construction of complex superlattices using homogenous soft matter has great potential for the bottom-up fabrication of complex,nanoscale structures.This topic is not only interested in scientific exploring for ne...The construction of complex superlattices using homogenous soft matter has great potential for the bottom-up fabrication of complex,nanoscale structures.This topic is not only interested in scientific exploring for new concepts of supramolecular crystals with nanometer in sizes,which is about thousand times larger in volumes than those of normal crystals,but also practically important to provide construction principles of metamaterials which are artificially structured materials for controlling and manipulating light,sound,and other physical behaviors.These systems have fast assembly kinetics and convenient processing procedures,making them ideal for large-scale superlattice production.In this perspective,we focus on recent developments in the construction of complex spherical packing superlattices using homogenous soft self-assemblies.We discuss the general mechanism of those formations of supramolecular motifs and provide an overview of the spherical packing superlattices self-assembled by homogenous soft matters based on different volume asymmetry.Additionally,we outline the potentials of utilizing this approach in constructing novel superlattices as well as its future challenges.展开更多
Soft matter has attracted extensive attention due to its special physical/chemical properties and holds great promise in many applications. However, obtaining a detailed understanding of both complex fluid and mass tr...Soft matter has attracted extensive attention due to its special physical/chemical properties and holds great promise in many applications. However, obtaining a detailed understanding of both complex fluid and mass transport in soft matter, especially in hierarchical porous media of biological tissues, still remains a huge challenge. Herein, inspired by fast tracer transport in loose connective tissues of living systems, we observed an interesting phenomenon of fast molecular transport in situ in an artificial hierarchical multiphase porous medium (a micrometer scale hydrophobic fiber network filled with nanometer scale hydrophilic porous medium), which was simply fabricated through electro- spinning technology and polymerization. The transportation speed of molecules in the micrometer fiber network is larger than simple diffusion in nanometer media, which is better described by Fick's law. We further proved that the phenomenon is based on the nanoconfined air/water/solid interface around the micrometer hydrophobic fibers. We focus on the key factors, referring to SA, (the confined multiphase area around the microfibers) and Nc (the connectivity node degree of the skeletal portion in the nanometer hydrogel medium). Next, a quantitative parameter, VTCM (transport chance mean-value), was introduced to describe the molecular transport capability of the fiber network within hierarchical multiphase porous systems. These fundamental advances can be applied de novo to understand the process of so-called simple diffusion in biological systems, and even to re-describe many molecular events in biologically nanoconfined spaces.展开更多
This essay discusses some preliminary thoughts on the development of a rational and modular approach for molecular design in soft matter engineering and proposes ideas of structural and functional synthons for advance...This essay discusses some preliminary thoughts on the development of a rational and modular approach for molecular design in soft matter engineering and proposes ideas of structural and functional synthons for advanced functional materials. It echoes the Materials Genome Initiative by practicing a tentative retro-functional analysis (RFA) scheme. The importance of hierarchical structures in transferring and amplifying molecular functions into macroscopic properties is recognized and emphasized. According to the role of molecular segments in final materials, there are two types of building blocks: structural synthon and functional synthon. Guided by a specific structure for a desired function, these synthons can be modularly combined in various ways to construct molecular scaffolds. Detailed molecular structures are then deduced, designed and synthesized precisely and modularly. While the assembled structure and property may deviate from the original design, the study may allow further refinement of the molecular design toward the target function, The strategy has been used in the development of soft fullerene materials and other giant molecules. There are a few aspects that are not yet well addressed: (1) function and structure are not fully decoupled and (2) the assembled hierarchical structures are sensitive to secondary interactions and molecular geometries across different length scales. Nevertheless, the RFA approach provides a starting point and an alternative thinking pathway by provoking creativity with considerations from both chemistry and physics. This is particularly useful for engineering soft matters with supramolecular lattice formation, as in giant molecules, where the synthons are relatively independent of each other.展开更多
The microstructure of the main longitudinal veins of the dragonfly wing and the aerodynamic behaviors of the wing were investigated in this paper. The microstructure of longitudinal vein presents two circumferential c...The microstructure of the main longitudinal veins of the dragonfly wing and the aerodynamic behaviors of the wing were investigated in this paper. The microstructure of longitudinal vein presents two circumferential chitin layers and a protein-fiber soft layer. The dragonfly wing is corrugated due to the spatial arrangement of longitudinal veins. It was found that the corru- gation angle could significantly influence the lift/drag ratio across a range of attack angles by the wind tunnel experiments. The results of the finite element analysis indicate that the protein soft layer of vein facilitates the change of the corrugation angle by allowing substantial relative twisting deformation between two neighboring veins, which is not possible in veins without a soft sandwich layer.展开更多
Soft matters are observed anomalous viscosity behaviors often characterized by a power law frequency dependent attenuation in acoustic wave propagation. Recent decades have witnessed a fast growing research on develop...Soft matters are observed anomalous viscosity behaviors often characterized by a power law frequency dependent attenuation in acoustic wave propagation. Recent decades have witnessed a fast growing research on developing various models for such anomalous viscosity behaviors among which one of the present authors proposed the modified Szabo's wave equation via the positive fractional derivative. The purpose of this study is to apply the modified Szabo's wave equation to simulate a recent ultrasonic imaging technique called the clinical amplitude- velocity reconstruction imaging (CARI) of breast tumors which are of typical soft tissue matters. Investigations have been made on the effects of the size and position of tumors on the quality of ultrasonic medical imaging. It is observed from numerical results that the sound pressure along the reflecting line, which indicates the detection results, varies obviously with sizes and lateral positions of tumors, but remains almost the same for different axial positions.展开更多
The appearance of the first laser approximately 12 years after the invention of holography by Gabor(1948)revolutionized the field of optical metrology.In fact,the invention of holographic interferometry enabled the ex...The appearance of the first laser approximately 12 years after the invention of holography by Gabor(1948)revolutionized the field of optical metrology.In fact,the invention of holographic interferometry enabled the exploitation of interferometry on non-mirror surfaces and full-scale objects.The holography-based measurement methods has been implemented to several industrial systems or in support of R&D with the aim of improving new products in many fields(automotive,aerospace,electronics,etc.).To date,holography has been considered an important measurement tool for non-destructive inspection(NDI),strain-stress measurement,and vibration analysis at various engineering sites.Recently,the new paradigm of Industry4.0 has seen the introduction of new technologies and methods of processing materials as well as the development of manufacturing approaches for the realization of innovative products.For example,direct printing,additive,and bottom-up manufacturing processes are expected to involve new ways of making products in future,and most innovative fabrication processes will be based on the manipulation of soft matter(e.g.,starting from the liquid phase)that will be shaped at the nanoscale.The inherent characteristics of digital holography(DH)make it a powerful and accurate tool for the visualization and testing of final products,as well as for in situ and real-time monitoring and quantitative characterization of the processes involved during the fabrication cycle.This review aims to report on the most useful applications of soft matter,where the capabilities offered by DH,such as three-dimensional(3D)imaging,extended focus,3D tracking,full-field analysis,high sensitivity,and a wide range of measurements from nanometers to centimeters,permit completely non-invasive characterizations on a full-scale.Several holographic experimental results of typical samples are reported and discussed where DH plays a primary role as a tool gauge for soft matter.展开更多
Micro-droplets of soft matter solutions have different morphologies upon drying,and can become wrinkled,buckled or cavitated particles.We investigate the morphology evolution of a drying soft matter droplet in this wo...Micro-droplets of soft matter solutions have different morphologies upon drying,and can become wrinkled,buckled or cavitated particles.We investigate the morphology evolution of a drying soft matter droplet in this work:at the early stage of drying,wrinkling or cavitation instability can occur in the droplet,depending on the comparison between the critical wrinkling and cavitation pressure;at a later stage of drying,no wrinkles will appear if cavitation happens first,while cavitation can still occur if wrinkling happens first.A three-dimensional phase diagram in the space of elastic length,gel layer thickness and weight loss is provided to illustrate the drying pathways of a soft matter droplet.This diagram can help guide future fabrications of micro-particles with desired morphologies.展开更多
Soft matter, as first proposed by de Gennes in 1991, describes a broad range of molecular systems exhibiting a large response to small foreign stimuli. Typically, it includes colloidal particles, amphiphiles, liquid c...Soft matter, as first proposed by de Gennes in 1991, describes a broad range of molecular systems exhibiting a large response to small foreign stimuli. Typically, it includes colloidal particles, amphiphiles, liquid crystals, polymers and others. The term "soft" originates from the common macroscopic properties of these systems and differentiates them from conventional "hard" materials. Over the past decades, the field of "soft matter" has progressed tremendously. Today, it is a truly multidisciplinary research endeavor bridging physics with chemistry and life science. There are many research activities all over the world that are solely devoted to the field of soft matter. In turn, the in-depth understanding of soft matter has promoted our sci- ence and technology and helped shaping our civilization as it is now.展开更多
The indentation technique is widely used in measuring the mechanical properties of soft matter at the microscale or nanoscale,but still faces challenges by these unique properties as well as the consequent strong surf...The indentation technique is widely used in measuring the mechanical properties of soft matter at the microscale or nanoscale,but still faces challenges by these unique properties as well as the consequent strong surface adhesion, including the strong nonlinear effect, unclear judgment of the contact point, difficulties in estimating the contact area, and the risk of the indenter piercing the sample. Here we propose a two-step method to solve these problems: lay a hard film on a soft matter, and obtain the viscoelastic properties of this soft matter through the indentation response of this composite structure. We first establish a theoretical indentation model of the hard film-soft substrate system based on the theory of plates, elastic-viscoelastic correspondence principle and Boltzmann superposition principle. To verify the correctness of this method, we measure the mechanical properties of the methyl vinyl silicone rubber(MVSR) covered by a Cu nanofilm. Finally, we test the effectiveness and error sensitivity of this method with the finite element method(FEM). The results show that our method can accurately measure the mechanical properties of soft matter, while effectively circumventing the problems of the traditional indentation technique.展开更多
Soft condensed-state physics is a disciplinary frontier of 20th-century physics. An interdiscipline in nature, it involves biology, chemistry and even pure mathematics. Taking the liquid crystal (LC) biomembrane as an...Soft condensed-state physics is a disciplinary frontier of 20th-century physics. An interdiscipline in nature, it involves biology, chemistry and even pure mathematics. Taking the liquid crystal (LC) biomembrane as an example, this article expounds the current development trend of this new and promising branch of contemporary physics.展开更多
The influences of silica volume fraction, electrolyte concentration and pH value upon the stress dependence of elastic modulus G′and viscous modulus G″ were investigated. The results show that the suspension transfo...The influences of silica volume fraction, electrolyte concentration and pH value upon the stress dependence of elastic modulus G′and viscous modulus G″ were investigated. The results show that the suspension transforms from a liquid-like state to a solid-like state with increasing the volume fraction of silica. Such a solid-like state can be transformed back into a liquid-like state under the application of a larger stress. At the higher volume fraction, the larger critical stress is required to induce the transition from solid-like to liquid-like state. As the electrolyte concentration decreases or pH value increases, the inter-particle force increases, which causes the state transition to occur at a higher stress.展开更多
Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of ...Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of cement and a kind of industrial wastes, i.e. granulated blast furnace slag, on stabilization of surplus soft clay. The results showed that the cement and slag can successfully stabilize Ariake clays even though this high organic clay fails to be stabilized by lime and cement. Addition of slag in cement for stabilization induces higher strength than cement alone for longer curing time. The application of the cement with slag is more suitable than cement alone for stabilization because of economical consideration.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 81788101, T2125011, 11861161004, and 12104447)the National Key R&D Program of China (Grant No. 2018YFA0306600)+5 种基金the Chinese Academy of Sciences (Grant Nos. XDC07000000, GJJSTD20200001,QYZDY-SSW-SLH004,Y201984, and YSBR-068)Innovation Program for Quantum Science and Technology (Grant Nos. 2021ZD0303204 and 2021ZD0302200)the Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000)Hefei Comprehensive National Science CenterChina Postdoctoral Science Foundation (Grant No. 2020M671858)the Fundamental Research Funds for the Central Universities。
文摘We present a magnetic scanning microscope equipped with a nitrogen-vacancy(NV) center scanning probe that has the ability to mechanically tune the strain of soft matter in-situ. The construction of the microscope and a continuous straintuning sample holder are discussed. An optically detected magnetic resonance protocol utilized in the imaging is described.In order to show the reliability of this microscope, the strain conduction is estimated with finite element simulation, and xray diffraction is required for calibration when freestanding crystal films are under consideration. A magnetic imaging result is displayed to demonstrate the nano-scale imaging capability. The microscope presented in this work is helpful in studying strain-coupled magnetic physics such as magnetic phase transition under strain and strain-tuned cycloidal orientation tilting.
文摘Survival at tumor recurrence in soft matter, after chemotherapy, is assessed by RNA folding. It is shown that this recurrence is starting with development of a fluidlike globule;it changes the energy of soft matter;it proceeds as a resonant mixing;and at the end it causes diffusion. This diffusion is interpreted as metastasis in soft matter. A tumor memory is designed for its recurrence oscillations. These oscillations are marked as positive or negative according to their influence on life stabilization or destabilization. It is demonstrated that a tumor memorizes two types of recurrences. The intensity of chemotherapy in soft matter for a tumor with such memory is obtained. Survival at tumor recurrence in soft matter, after chemotherapy, is assigned to one of the five regions of the phase diagram of the “thermalized” tumor by microenvironment. To each of these regions is collated a breast cancer survival class. It is found that the survival at tumor recurrence in soft matter, after chemotherapy, well represents actual survival of 32 patients with breast cancer.
基金Project supported by the National Natural Science of China(Grant Nos.21434001,51561145002,and 11421110001)
文摘When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by using the solute based Lagrangian scheme which was proposed by us recently. In this scheme, the process of the gelation(i.e., the change from sol to gel) can be naturally incorporated in the diffusion equation. Effects of the elasticity of the skin phase, the evaporation rate of the solvents, and the initial concentration of the solutions are discussed. Moreover, the condition for the skin formation is provided.
文摘<span style="font-family:Verdana;">The paper reassesse</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> a survival at tumor recurrence in soft matter.</span></span></span><span><span><span style="font-size:11.0pt;"> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">First, the </span><span style="font-family:Verdana;">stability of structural motifs</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">under shear in clusters of dipolar spheres is</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> characterized.</span><span style="font-family:Verdana;"> Next, there are introduced transitions between polymer</span><span style="font-family:Verdana;"> knots and </span><span style="font-family:Verdana;">rhythms of these transitions are obtained. </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">The </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">sensor is built for these</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> rhythms. Treatment, with a tensile force protocol, is modeled, wh</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">en</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the tu</span><span style="font-family:Verdana;">mor in soft matter is observed by the above sensor. Survival probability, at</span><span style="font-family:Verdana;"> tumor recurrence in soft matter, is defined for the treatment with a tensile force protocol.</span><span style="font-family:Verdana;"> It is stated that the survival probability at a tensile force protocol</span><span style="font-family:Verdana;"> treat</span><span style="font-family:Verdana;">ment in</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">soft matter confirms or specifies the prognostic survival of 32 patients with</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> breast cancer.</span></span></span>
基金financially supported by the Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices(No.2019B121203003)the Recruitment Program of Guangdong(No.2016ZT06C322)Major Program of National Natural Science Foundation of China(No.51890871)。
文摘The construction of complex superlattices using homogenous soft matter has great potential for the bottom-up fabrication of complex,nanoscale structures.This topic is not only interested in scientific exploring for new concepts of supramolecular crystals with nanometer in sizes,which is about thousand times larger in volumes than those of normal crystals,but also practically important to provide construction principles of metamaterials which are artificially structured materials for controlling and manipulating light,sound,and other physical behaviors.These systems have fast assembly kinetics and convenient processing procedures,making them ideal for large-scale superlattice production.In this perspective,we focus on recent developments in the construction of complex spherical packing superlattices using homogenous soft self-assemblies.We discuss the general mechanism of those formations of supramolecular motifs and provide an overview of the spherical packing superlattices self-assembled by homogenous soft matters based on different volume asymmetry.Additionally,we outline the potentials of utilizing this approach in constructing novel superlattices as well as its future challenges.
基金This study was supported by the National Natural Science Foundation of China (No. 81141118) and the National Basic Research Program of China (973 Program) (Nos. 2012CB9333800 and 2012CB518506).
文摘Soft matter has attracted extensive attention due to its special physical/chemical properties and holds great promise in many applications. However, obtaining a detailed understanding of both complex fluid and mass transport in soft matter, especially in hierarchical porous media of biological tissues, still remains a huge challenge. Herein, inspired by fast tracer transport in loose connective tissues of living systems, we observed an interesting phenomenon of fast molecular transport in situ in an artificial hierarchical multiphase porous medium (a micrometer scale hydrophobic fiber network filled with nanometer scale hydrophilic porous medium), which was simply fabricated through electro- spinning technology and polymerization. The transportation speed of molecules in the micrometer fiber network is larger than simple diffusion in nanometer media, which is better described by Fick's law. We further proved that the phenomenon is based on the nanoconfined air/water/solid interface around the micrometer hydrophobic fibers. We focus on the key factors, referring to SA, (the confined multiphase area around the microfibers) and Nc (the connectivity node degree of the skeletal portion in the nanometer hydrogel medium). Next, a quantitative parameter, VTCM (transport chance mean-value), was introduced to describe the molecular transport capability of the fiber network within hierarchical multiphase porous systems. These fundamental advances can be applied de novo to understand the process of so-called simple diffusion in biological systems, and even to re-describe many molecular events in biologically nanoconfined spaces.
基金financially supported by the 863 Program(No.2015AA020941)the National Natural Science Foundation of China(Nos.21474003 and 91427304)+1 种基金National Science Foundation of USA(Nos.DMR-0906898 and DMR-1408872)the Joint-Hope Education Foundation.W.B.Z.acknowledges support from the National"1000 Plan(Youth)"of China
文摘This essay discusses some preliminary thoughts on the development of a rational and modular approach for molecular design in soft matter engineering and proposes ideas of structural and functional synthons for advanced functional materials. It echoes the Materials Genome Initiative by practicing a tentative retro-functional analysis (RFA) scheme. The importance of hierarchical structures in transferring and amplifying molecular functions into macroscopic properties is recognized and emphasized. According to the role of molecular segments in final materials, there are two types of building blocks: structural synthon and functional synthon. Guided by a specific structure for a desired function, these synthons can be modularly combined in various ways to construct molecular scaffolds. Detailed molecular structures are then deduced, designed and synthesized precisely and modularly. While the assembled structure and property may deviate from the original design, the study may allow further refinement of the molecular design toward the target function, The strategy has been used in the development of soft fullerene materials and other giant molecules. There are a few aspects that are not yet well addressed: (1) function and structure are not fully decoupled and (2) the assembled hierarchical structures are sensitive to secondary interactions and molecular geometries across different length scales. Nevertheless, the RFA approach provides a starting point and an alternative thinking pathway by provoking creativity with considerations from both chemistry and physics. This is particularly useful for engineering soft matters with supramolecular lattice formation, as in giant molecules, where the synthons are relatively independent of each other.
基金The authors would like to acknowledge the projects supported by the National Natural Science Foundation of China (Grants No: 11272173, 11572170).
文摘The microstructure of the main longitudinal veins of the dragonfly wing and the aerodynamic behaviors of the wing were investigated in this paper. The microstructure of longitudinal vein presents two circumferential chitin layers and a protein-fiber soft layer. The dragonfly wing is corrugated due to the spatial arrangement of longitudinal veins. It was found that the corru- gation angle could significantly influence the lift/drag ratio across a range of attack angles by the wind tunnel experiments. The results of the finite element analysis indicate that the protein soft layer of vein facilitates the change of the corrugation angle by allowing substantial relative twisting deformation between two neighboring veins, which is not possible in veins without a soft sandwich layer.
基金supported by National Basic Research Program of China (973 Project No. 2010CB832702)the National Science Funds for Distinguished Young Scholars (11125208)+2 种基金the R&D Special Fund for Public Welfare Industry (Hydrodynamics, Project No. 201101014)Wen Chen is grateful of the Alexander von Humboldt Foundation, Germany, for an Experienced Researcher fellowshipXiaodi Zhang would like to thank China Scholarship Council (CSC) for the financial support
文摘Soft matters are observed anomalous viscosity behaviors often characterized by a power law frequency dependent attenuation in acoustic wave propagation. Recent decades have witnessed a fast growing research on developing various models for such anomalous viscosity behaviors among which one of the present authors proposed the modified Szabo's wave equation via the positive fractional derivative. The purpose of this study is to apply the modified Szabo's wave equation to simulate a recent ultrasonic imaging technique called the clinical amplitude- velocity reconstruction imaging (CARI) of breast tumors which are of typical soft tissue matters. Investigations have been made on the effects of the size and position of tumors on the quality of ultrasonic medical imaging. It is observed from numerical results that the sound pressure along the reflecting line, which indicates the detection results, varies obviously with sizes and lateral positions of tumors, but remains almost the same for different axial positions.
基金the MIUR project,"Piattaforma Modulare Multi Missione"(PM3),ARS01_01181.
文摘The appearance of the first laser approximately 12 years after the invention of holography by Gabor(1948)revolutionized the field of optical metrology.In fact,the invention of holographic interferometry enabled the exploitation of interferometry on non-mirror surfaces and full-scale objects.The holography-based measurement methods has been implemented to several industrial systems or in support of R&D with the aim of improving new products in many fields(automotive,aerospace,electronics,etc.).To date,holography has been considered an important measurement tool for non-destructive inspection(NDI),strain-stress measurement,and vibration analysis at various engineering sites.Recently,the new paradigm of Industry4.0 has seen the introduction of new technologies and methods of processing materials as well as the development of manufacturing approaches for the realization of innovative products.For example,direct printing,additive,and bottom-up manufacturing processes are expected to involve new ways of making products in future,and most innovative fabrication processes will be based on the manipulation of soft matter(e.g.,starting from the liquid phase)that will be shaped at the nanoscale.The inherent characteristics of digital holography(DH)make it a powerful and accurate tool for the visualization and testing of final products,as well as for in situ and real-time monitoring and quantitative characterization of the processes involved during the fabrication cycle.This review aims to report on the most useful applications of soft matter,where the capabilities offered by DH,such as three-dimensional(3D)imaging,extended focus,3D tracking,full-field analysis,high sensitivity,and a wide range of measurements from nanometers to centimeters,permit completely non-invasive characterizations on a full-scale.Several holographic experimental results of typical samples are reported and discussed where DH plays a primary role as a tool gauge for soft matter.
基金supports from Chinese Academy of Sciences(No.XDA17010504 and No.XDPB15)the National Natural Science Foundation of China(No.12047503)+1 种基金the support of the National Natural Science Foundation of China(Grant No.11774394)the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(Grant No.QYZDB-SSW-SYS003)
文摘Micro-droplets of soft matter solutions have different morphologies upon drying,and can become wrinkled,buckled or cavitated particles.We investigate the morphology evolution of a drying soft matter droplet in this work:at the early stage of drying,wrinkling or cavitation instability can occur in the droplet,depending on the comparison between the critical wrinkling and cavitation pressure;at a later stage of drying,no wrinkles will appear if cavitation happens first,while cavitation can still occur if wrinkling happens first.A three-dimensional phase diagram in the space of elastic length,gel layer thickness and weight loss is provided to illustrate the drying pathways of a soft matter droplet.This diagram can help guide future fabrications of micro-particles with desired morphologies.
文摘Soft matter, as first proposed by de Gennes in 1991, describes a broad range of molecular systems exhibiting a large response to small foreign stimuli. Typically, it includes colloidal particles, amphiphiles, liquid crystals, polymers and others. The term "soft" originates from the common macroscopic properties of these systems and differentiates them from conventional "hard" materials. Over the past decades, the field of "soft matter" has progressed tremendously. Today, it is a truly multidisciplinary research endeavor bridging physics with chemistry and life science. There are many research activities all over the world that are solely devoted to the field of soft matter. In turn, the in-depth understanding of soft matter has promoted our sci- ence and technology and helped shaping our civilization as it is now.
基金the National Natural Science Foundation of China(Grant Nos.11432014,11521202,11672301,and 11890681).
文摘The indentation technique is widely used in measuring the mechanical properties of soft matter at the microscale or nanoscale,but still faces challenges by these unique properties as well as the consequent strong surface adhesion, including the strong nonlinear effect, unclear judgment of the contact point, difficulties in estimating the contact area, and the risk of the indenter piercing the sample. Here we propose a two-step method to solve these problems: lay a hard film on a soft matter, and obtain the viscoelastic properties of this soft matter through the indentation response of this composite structure. We first establish a theoretical indentation model of the hard film-soft substrate system based on the theory of plates, elastic-viscoelastic correspondence principle and Boltzmann superposition principle. To verify the correctness of this method, we measure the mechanical properties of the methyl vinyl silicone rubber(MVSR) covered by a Cu nanofilm. Finally, we test the effectiveness and error sensitivity of this method with the finite element method(FEM). The results show that our method can accurately measure the mechanical properties of soft matter, while effectively circumventing the problems of the traditional indentation technique.
文摘Soft condensed-state physics is a disciplinary frontier of 20th-century physics. An interdiscipline in nature, it involves biology, chemistry and even pure mathematics. Taking the liquid crystal (LC) biomembrane as an example, this article expounds the current development trend of this new and promising branch of contemporary physics.
基金the National Natural Science Foundation of China(No.2 0 2 4 30 0 2 )
文摘The influences of silica volume fraction, electrolyte concentration and pH value upon the stress dependence of elastic modulus G′and viscous modulus G″ were investigated. The results show that the suspension transforms from a liquid-like state to a solid-like state with increasing the volume fraction of silica. Such a solid-like state can be transformed back into a liquid-like state under the application of a larger stress. At the higher volume fraction, the larger critical stress is required to induce the transition from solid-like to liquid-like state. As the electrolyte concentration decreases or pH value increases, the inter-particle force increases, which causes the state transition to occur at a higher stress.
文摘Utilization of industrial waste and surplus construction soft clay as construction material was recommended, and many attempts at geotechnical waste utilization were undertaken. This study aimed at the application of cement and a kind of industrial wastes, i.e. granulated blast furnace slag, on stabilization of surplus soft clay. The results showed that the cement and slag can successfully stabilize Ariake clays even though this high organic clay fails to be stabilized by lime and cement. Addition of slag in cement for stabilization induces higher strength than cement alone for longer curing time. The application of the cement with slag is more suitable than cement alone for stabilization because of economical consideration.