期刊文献+
共找到292篇文章
< 1 2 15 >
每页显示 20 50 100
Soil CO_2 flux in relation to dissolved organic carbon,soil temperature and moisture in a subtropical arable soil of China 被引量:2
1
作者 LOUYun-sheng LIZhong-pei ZHANGTao-lin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第5期715-720,共6页
Soil CO 2 emission from an arable soil was measured by closed chamber method to quantify year round soil flux and to develop an equation to predict flux using soil temperature, dissolved organic carbon(DOC) and soil... Soil CO 2 emission from an arable soil was measured by closed chamber method to quantify year round soil flux and to develop an equation to predict flux using soil temperature, dissolved organic carbon(DOC) and soil moisture content. Soil CO 2 flux, soil temperature, DOC and soil moisture content were determined on selected days during the experiment from August 1999 to July 2000, at the Ecological Station of Red Soil, the Chinese Academy of Sciences, in a subtropical region of China. Soil CO 2 fluxes were generally higher in summer and autumn than in winter and spring, and had a seasonal pattern more similar to soil temperature and DOC than soil moisture. The estimation was 2 23 kgCO 2/(m 2·a) for average annual soil CO 2 flux. Regressed separately, the reasons for soil flux variability were 86 6% from soil temperature, 58 8% from DOC, and 26 3% from soil moisture, respectively. Regressed jointly, a multiple equation was developed by the above three variables that explained approximately 85 2% of the flux variance, however by stepwise regression, soil temperature was the dominant affecting soil flux. Based on the exponential equation developed from soil temperature, the predicted annual flux was 2 49 kgCO 2/(m 2·a), and essentially equal to the measured one. It is suggested the exponential relationship between soil flux and soil temperature could be used for accurately predicting soil CO 2 flux from arable soil in subtropical regions of China. 展开更多
关键词 soil CO 2 flux soil temperature DOC soil moisture arable soil
下载PDF
Abiotic contribution to total soil CO_2 flux across a broad range of land-cover types in a desert region 被引量:4
2
作者 MA Jie LIU Ran LI Yan 《Journal of Arid Land》 SCIE CSCD 2017年第1期13-26,共14页
As an important component of ecosystem carbon(C) budgets, soil carbon dioxide(CO2) flux is determined by a combination of a series of biotic and abiotic processes. Although there is evidence showing that the abiot... As an important component of ecosystem carbon(C) budgets, soil carbon dioxide(CO2) flux is determined by a combination of a series of biotic and abiotic processes. Although there is evidence showing that the abiotic component can be important in total soil CO2 flux(R(total)), its relative importance has never been systematically assessed. In this study, after comparative measurements of CO2 fluxes on sterilized and natural soils, the R(total) was partitioned into biotic flux(R(biotic)) and abiotic flux(R(abiotic)) across a broad range of land-cover types(including eight sampling sites: cotton field, hops field, halophyte garden, alkaline land, reservoir edge, native saline desert, dune crest and interdune lowland) in Gurbantunggut Desert, Xinjiang, China. The relative contribution of R(abiotic) to R(total), as well as the temperature dependency and predominant factors for R(total), R(biotic) and R(abiotic), were analyzed. Results showed that R(abiotic) always contributed to R(total) for all of the eight sampling sites, but the degree or magnitude of contribution varied greatly. Specifically, the ratio of R(abiotic) to R(total) was very low in cotton field and hops field and very high in alkaline land and dune crest. Statistically, the ratio of R(abiotic) to R(total) logarithmically increased with decreasing R(biotic), suggesting that R(abiotic) strongly affected R(total) when R(biotic) was low. This pattern confirms that soil CO2 flux is predominated by biotic processes in most soils, but abiotic processes can also be dominant when biotic processes are weak. On a diurnal basis, R(abiotic) cannot result in net gain or net loss of CO2, but its effect on transient CO2 flux was significant. Temperature dependency of R(total) varied among the eight sampling sites and was determined by the predominant processes(abiotic or biotic) of CO2 flux. Specifically, R(biotic) was driven by soil temperature while R(abiotic) was regulated by the change in soil temperature(ΔT). Namely, declining temperature(ΔT0) resulted in positive R(abiotic)(i.e., CO2 released from soil). Without recognition of R(abiotic), R(biotic) would be overestimated for the daytime and underestimated for the nighttime. Although R(abiotic) may not change the sum or the net value of daily soil CO2 exchange and may not directly constitute a C sink, it can significantly alter the transient apparent soil CO2 flux, either in magnitude or in temperature dependency. Thus, recognizing the fact that abiotic component in R(total) exists widely in soils has widespread consequences for the understanding of C cycling. 展开更多
关键词 soil CO2 flux biotic flux abiotic flux temperature dependence Gurbantunggut Desert
下载PDF
Soil organic carbon storage and soil CO_2 flux in the alpine meadow ecosystem 被引量:12
3
作者 TAO Zhen1,2,SHEN ChengDe2,GAO QuanZhou1,SUN YanMin2,YI WeiXi2 & LI YingNian3 1 School of Geography and Planning,Sun Yat-sen University,Guangzhou 510275,China 2 Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China 3 Northwest Plateau Institute of Biology,Chinese Academy of Sciences,Xining 810001,China 《Science China Earth Sciences》 SCIE EI CAS 2007年第7期1103-1114,共12页
High-resolution sampling,measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau,and application of 14C tracing technol... High-resolution sampling,measurements of organic carbon contents and 14C signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau,and application of 14C tracing technology were conducted in an attempt to investigate the turnover times of soil organic car-bon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12×104 kg C hm-2 to 30.75×104 kg C hm-2 in the alpine meadow eco-systems,with an average of 26.86×104 kg C hm-2. Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m-2 a-1 to 254.93 gC m-2 a-1,with an average of 191.23 g C m-2 a-1. The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m-2 a-1 to 181 g C m-2 a-1. More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%―81.23% of total CO2 emitted from or-ganic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming,the storage,volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed,which needs further research. 展开更多
关键词 TIBETAN PLATEAU ALPINE MEADOW soil organic carbon CO2 flux 14C SIGNATURE
原文传递
Effect of CO_(2)exposure on the mechanical strength of geopolymerstabilized sandy soils
4
作者 Hamid Reza Razeghi Armin Geranghadr +2 位作者 Fatemeh Safaee Pooria Ghadir Akbar A.Javadi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期670-681,共12页
In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geop... In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate. 展开更多
关键词 soil stabilization CO_(2)effect GEOPOLYMER
下载PDF
Dredged marine soil stabilization using magnesia cement augmented with biochar/slag
5
作者 Chikezie Chimere Onyekwena Qi Li +5 位作者 Yong Wang Ishrat Hameed Alvi Wentao Li Yunlu Hou Xianwei Zhang Min Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1000-1017,共18页
Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materia... Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materials(SCMs)to stabilize DMS under ambient and carbon dioxide(CO_(2))curing conditions.Several proprietary experimental tests were conducted to investigate the stabilized DMS.Furthermore,the carbonation-induced mineralogical,thermal,and microstructural properties change of the samples were explored.The findings show that the compressive strength of the stabilized DMS fulfilled the 7-d requirement(0.7-2.1 MPa)for pavement and building foundations.Replacing rMgO with SCMs such as biochar or ground granulated blast-furnace slag(GGBS)altered the engineering properties and particle packing of the stabilized soils,thus influencing their performances.Biochar increased the porosity of the samples,facilitating higher CO_(2) uptake and improved ductility,while GGBS decreased porosity and increased the dry density of the samples,resulting in higher strength.The addition of SCMs also enhanced the water retention capacity and modified the pH of the samples.Microstructural analysis revealed that the hydrated magnesium carbonates precipitated in the carbonated samples provided better cementation effects than brucite formed during rMgO hydration.Moreover,incorporating SCMs reduced the overall global warming potential and energy demand of the rMgO-based systems.The biochar mixes demonstrated lower toxicity and energy consumption.Ultimately,the rMgO and biochar blend can serve as an environmentally friendly additive for soft soil stabilization and permanent fixation of significant amounts of CO_(2) in soils through mineral carbonation,potentially reducing environmental pollution while meeting urbanization needs. 展开更多
关键词 Dredged marine soil CO_(2)uptake Reactive magnesia BIOCHAR Ground granulated blast-furnace slag
下载PDF
Seasonal and Annual Variations of CO_2 Fluxes in Rain-Fed Winter Wheat Agro-Ecosystem of Loess Plateau, China 被引量:8
6
作者 WANG Wen LIAO Yun-cheng GUO Qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第1期147-158,共12页
To accurately evaluate the carbon sequestration potential and better elucidate the relationship between the carbon cycle and regional climate change, using eddy covariance system, we conducted a long-term measurement ... To accurately evaluate the carbon sequestration potential and better elucidate the relationship between the carbon cycle and regional climate change, using eddy covariance system, we conducted a long-term measurement of CO 2 fluxes in the rain-fed winter wheat field of the Chinese Loess Plateau. The results showed that the annual net ecosystem CO 2 exchange (NEE) was (-71.6±5.7) and (-65.3±5.3) g C m-2 y-1 for 2008-2009 and 2009-2010 crop years, respectively, suggesting that the agro-ecosystem was a carbon sink (117.4-126.2 g C m-2 yr-1). However, after considering the harvested grain, the agro- ecosystem turned into a moderate carbon source. The variations in NEE and ecosystem respiration (R eco ) were sensitive to changes in soil water content (SWC). When SWC ranged form 0.15 to 0.21 m3 m-3, we found a highly significant relationship between NEE and photosynthetically active radiation (PAR), and a highly significant relationship between R eco and soil temperature (T s ). However, the highly significant relationships were not observed when SWC was outside the range of 0.15-0.21 m3 m-3. Further, in spring, the R eco instantly responded to a rapid increase in SWC after effective rainfall events, which could induce 2 to 4-fold increase in daily R eco , whereas the R eco was also inhibited by heavy summer rainfall when soils were saturated. Accumulated R eco in summer fallow period decreased carbon fixed in growing season by 16- 25%, indicating that the period imposed negative impacts on annual carbon sequestration. 展开更多
关键词 CO 2 flux carbon sequestration soil water content rainfall event rain-fed winter wheat agro-ecosystem
下载PDF
Nitrous oxide fluxes from upland soils in central Hokkaido,Japan 被引量:8
7
作者 Sonoko D.KIMURA Yo TOMA Ryusuke HATANO 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第11期1312-1322,共11页
Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November),for three years,in a total of 11 upland crop fields in central Hokkaido... Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November),for three years,in a total of 11 upland crop fields in central Hokkaido,Japan.The annual mean N2O fluxes ranged from 2.95 to 164.17 μgN/(m2·h),with the lowest observed in a grassland and the highest in an onion field.The instantaneous N2O fluxes showed a large temporal variation with peak emissions generally occurring following fertilization and heavy rainfall eve... 展开更多
关键词 mineral N pool N2O flux soil upland cropping system
下载PDF
Soil CO_2 Emissions as Affected by 20-Year Continuous Cropping in Mollisols 被引量:5
8
作者 YOU Meng-yang YUAN Ya-ru +2 位作者 LI Lu-jun XU Yan-li HAN Xiao-zeng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第3期615-623,共9页
Long-term continuous cropping of soybean (Glycine max), spring wheat (Triticum aesativum) and maize (Zea mays) is widely practiced by local farmers in northeast China. A field experiment (started in 1991) was ... Long-term continuous cropping of soybean (Glycine max), spring wheat (Triticum aesativum) and maize (Zea mays) is widely practiced by local farmers in northeast China. A field experiment (started in 1991) was used to investigate the differences in soil carbon dioxide (CO2) emissions under continuous cropping of the three major crops and to evaluate the relationships between CO2 fluxes and soil temperature and moisture for Mollisols in northeast China. Soil CO2 emissions were measured using a closed-chamber method during the growing season in 2011. No remarkable differences in soil organic carbon were found among the cropping systems (P〉0.05). However, significant differences in CO2 emissions from soils were observed among the three cropping systems (P〈0.05). Over the course of the entire growing season, cumulative soil CO2 emissions under different cropping systems were in the following order: continuous maize ((829±10) g CO2 m2)〉continuous wheat ((629±22) g CO2 m^2)〉continuous soybean ((474±30) g CO2 m-2). Soil temperature explained 42-65% of the seasonal variations in soil CO2 flux, with a Q10 between 1.63 and 2.31; water-filled pore space explained 25-47% of the seasonal variations in soil CO2 flux. A multiple regression model including both soil temperature (T, ~C) and water-filled pore space (W, %), log(])=a+bT log(W), was established, accounting for 51-66% of the seasonal variations in soil CO2 flux. The results suggest that soil CO2 emissions and their Q10 values under a continuous cropping system largely depend on crop types in Mollisols of Northeast China. 展开更多
关键词 CO2 flux MONOCULTURES soil organic carbon temperature sensitivity water-filled pore space
下载PDF
Minimizing N2O fluxes from full-scale municipal solid waste landfill with properly selected cover soil 被引量:3
9
作者 ZHANG Houhu HE Pinjing +2 位作者 SHAO Liming QU Xian LEE Duujong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第2期189-194,共6页
Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills, this study tested, during a four-year project, the hypothesis that the proper use ... Municipal solid waste landfills emit nitrous oxide (N2O) gas. Assuming that the soil cover is the primary N2O source from landfills, this study tested, during a four-year project, the hypothesis that the proper use of chosen soils with fine texture minimizes N2O emissions. A full-scale sanitary landfill, a full-scale bioreactor landfill and a cell planted with Nerium indicum or Festuca arundinacea Schreb, at the Hangzhou Tianziling landfill in Hangzhou City were the test sites. The N2O emission rates from all test sites were considerably lower than those reported in the published reports. Specifically, the N2O emission rate was dependent on soil water content and nitrate concentrations in the cover soil. The effects of leachate recirculation and irrigation were minimal. Properly chosen cover soils applied to the landfills reduced N2O flux. 展开更多
关键词 municipal solid waste landfill N2O flux cover soil LEACHATE NITRIFICATION/DENITRIFICATION environmental factors
下载PDF
Effects of amendments of paper mill sludge and nutrients on soil surface CO2 flux in northern hardwood forests
10
作者 WANG Chuan-kuan Drew C. Feldkirchner +2 位作者 Stith T. Gower Jim Ferris Eric L. Kruger 《Journal of Forestry Research》 SCIE CAS CSCD 2005年第4期265-269,共5页
Safe and economical disposal of paper mill sludge is a key consideration for forest products industry. A study was conducted to examine the effects of amendments of sludge and nutrients on soil surface CO2 flux (Rs)... Safe and economical disposal of paper mill sludge is a key consideration for forest products industry. A study was conducted to examine the effects of amendments of sludge and nutrients on soil surface CO2 flux (Rs) in northern hardwood forests and to quantify the relationship among Rs, soil temperature, and moisture in these stands. The experiment was a randomized complete block design that included sludge-amended, fertilized, and control treatments in sugar maple (Acer saccharum Marsh) dominated hardwood forests in the Upper Peninsula of Michigan, USA. Results showed that Rs was positively correlated to soil temperature (R^2 = 0.80, p 〈 0.001), but was poorly correlated to soil moisture. Soil moisture positively affected the Rs only in the sludge-amended treatment. The Rs was significantly greater in the sludge-amended treatment than in the fertilized (p = 0.033) and the control (p = 0.048) treatments. The maximum Rs in the sludge-amended treatment was 8.8 μmol CO2 · m^ 2. s^-1, 91% and 126% greater than those in the fertilized (4.6 μmol CO2 · m^-2· s^-1) and control (3.9 μmol CO2· m^- 2· s^-1) treatments, respectively. The Rs did not differ significantly between the fertilized and control treatments. The difference in Rs between sludge-amended and the other treatments decreased with time following treatment. 展开更多
关键词 Paper mill sludge FERTILIZATION soil surface CO2 flux Environmental factor
下载PDF
Soil CO_2 evolution from Korean pine virgin forest at Changbai Mountain
11
作者 马越强 延晓冬 杨思河 《Journal of Forestry Research》 SCIE CAS CSCD 1998年第3期192-194,共3页
The soil CO2 evolution rate was measured in a virpin Korean pine forest. The results in June showed that the lowest value of evolution rate was 220 mg /(m2·h) and appeared at 6:00 a.m. The highest value was 460 m... The soil CO2 evolution rate was measured in a virpin Korean pine forest. The results in June showed that the lowest value of evolution rate was 220 mg /(m2·h) and appeared at 6:00 a.m. The highest value was 460 mg /(m2·h) at 18:00. The rates of CO2 evolution were related with soil temperature. On the basis of the constructed regression equation and the monthly average values of temperature, the magnitude of CO2 evolution from Korean pine forest soil was 10.4 t /hm2 during a growing season. 展开更多
关键词 soil CO_2 evolution Korean pine forest Regression equation
下载PDF
In-Field Management Practices for Mitigating Soil CO<sub>2</sub>and CH<sub>4</sub>Fluxes under Corn (<i>Zea mays</i>) Production System in Middle Tennessee
12
作者 Sam Dennis Qi Deng +4 位作者 Dafeng Hui Junming Wang Stephen Iwuozo Chih-Li Yu Chandra Reddy 《American Journal of Climate Change》 2015年第4期367-378,共12页
The United States continues to be the largest corn producer in the world. How to maximize corn yield and at the same time reduce greenhouse gas emissions, is becoming a challenging effort for growers and researchers. ... The United States continues to be the largest corn producer in the world. How to maximize corn yield and at the same time reduce greenhouse gas emissions, is becoming a challenging effort for growers and researchers. As a result, our understanding of the responses of soil CO2 and CH4 fluxes to agricultural practices in cornfields is still limited. We conducted a 3-yr cornfield experiment to study the responses of soil CO2 and CH4 fluxes to various agricultural practices in middle Tennessee. The agricultural practices included no-tillage + regular applications of urea ammonium nitrate (NT-URAN);no-tillage + regular applications of URAN + denitrification inhibitor (NT-inhi- bitor);no-tillage + regular applications of URAN + biochar (NT-biochar);no-tillage + 20% applications of URAN + chicken litter (NT-litter);no-tillage + split applications of URAN (NT-split);and conventional tillage + regular applications of URAN as a control (CT-URAN). A randomized complete block design was used with six replications. The same amount of fertilizer equivalent to 217 kg·N·ha-1 was applied to all of the experimental plots. The results showed that improved fertilizer and soil management, except the NT-biochar treatment significantly increased soil CO2 flux as compared to the conventional tillage (CT-URAN, 487.05 mg CO2 m-2·h-1). Soil CO2 flux increased exponentially with soil temperature (T 2 flux tended to be positively related to corn yield and/or soil moisture. Soil CH4 flux increased linearly with soil moisture in all treatments. Improved fertilizer and soil management did not alter soil CH4 flux, but significantly affected its moisture sensitivity. Our results indicated that agricultural practices enhancing corn yield may also result in a net increase in carbon emissions from soil, hence reducing the potential of carbon sequestration in croplands. 展开更多
关键词 Tillage Fertilizer Management soil CO2 flux soil CH4 flux Greenhouse Gases
下载PDF
Effect of Land Use Change on Carbon Content and CO<sub>2</sub>Flux of Cloud Forest Soils, Santa Elena, Costa Rica
13
作者 Lawrence H. Tanner David L. Smith +1 位作者 Jessica Curry Justin Twist 《Open Journal of Soil Science》 2014年第2期64-71,共8页
We investigated the effects of land-use changes on soil carbon storage and soil CO2 flux by comparing soils from mature cloud forest and 31-year-old secondary forest, both in the Santa Elena Forest Reserve, a municipa... We investigated the effects of land-use changes on soil carbon storage and soil CO2 flux by comparing soils from mature cloud forest and 31-year-old secondary forest, both in the Santa Elena Forest Reserve, a municipallyowned reserve at an elevation of 1600 to 1700 m near the town of Monteverde, and a clear-cut pasture near the reserve. Soils in the mature forest exhibit only weak horizonation but typically thick A horizons;they also consistently yield the highest carbon contents in the upper 30 cm. Soil CO2 flux was the highest in these soils, but also displayed the highest spatial variability. Secondary forest soils contain substantially less soil carbon than mature forest soils, but more than pasture soils. CO2 flux in the secondary forest soils was more similar to that of the mature forest, but displayed lower spatial variability. The pasture soils contain less soil carbon and produced lower CO2 flux levels than either of the forest soils. The pasture soils typically contain a well-defined coarse sandy layer 10 to 20 cm below the surface that we interpret as a sediment layer deposited across much of the landscape following a widespread erosion event, likely a consequence of the clear-cutting. Soil nitrogen concentrations are more than an order of magnitude lower than soil carbon concentrations, and display no trends between the different landscapes examined. Our preliminary results suggest that reforestation does restore soil carbon to clear-cut landscapes, but returning soil carbon levels to pre-land use levels occurs at a time scale of centuries, rather than decades. 展开更多
关键词 CLOUD Forest Secondary Succession soil Carbon soil Nitrogen soil CO2 flux
下载PDF
Carbon dioxide partial pressure and its diffusion flux in karst surface aquatic ecosystems:a review
14
作者 Xingxing Cao Qixin Wu +1 位作者 Wanfa Wang Pan Wu 《Acta Geochimica》 EI CAS CSCD 2023年第5期943-960,共18页
Carbon dioxide(CO_(2))emissions from aquatic ecosystems are an important component of the karst carbon cycle process and also a key indicator for assessing the effect of karst carbon sinks.This paper reviewed the CO_(... Carbon dioxide(CO_(2))emissions from aquatic ecosystems are an important component of the karst carbon cycle process and also a key indicator for assessing the effect of karst carbon sinks.This paper reviewed the CO_(2)partial pressure(pCO_(2))and its diffusion flux(FCO_(2))in karst surface aquatic ecosystems,mainly rivers,lakes,and reservoirs,and their influencing factors summarized the methods for monitoring CO_(2)emissions in karst aquatic ecosystems and discussed their adaptation conditions in karst areas.The pCO_(2)and FCO_(2)decreased in the order of rivers>reservoirs>lakes,and the values in karst lakes were eventually significantly lower than those in global lakes.The pCO_(2)and FCO_(2)of karst aquatic ecosystems had patterns of variation with diurnal,seasonal,water depth and hydrological cycles,and spatial and temporal hetero-geneity.The sources of CO_(2)in karst waters are influenced by both internal and external sources,and the key spatial and temporal factors affecting the CO_(2)emissions from karst rivers,lakes,and reservoirs were determined in terms of physicochemical indicators,biological factors,and bio-genic elements;additionally,the process of human activity interference on CO_(2)emissions was discussed.Finally,a conceptual model illustrating the impacts of urban devel-opment,agriculture,mining,and dam construction on the CO_(2)emissions at the karst surface aquatic ecosystem is presented.Meanwhile,based on the disadvantages existing in current research,we proposed several important research fields related to CO_(2)emissions from karst surface aquatic ecosystems. 展开更多
关键词 Karst area RIVER LAKE RESERVOIR Partial pressure of CO_(2) CO_(2)diffusion flux
下载PDF
Superoxide Dismutase Plays an Important Role in Maize Resistance to Soil CO_(2)Stress
15
作者 XUE Lu MA Junjie +1 位作者 HU Qian MA Jinfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期995-1001,共7页
CO_(2)capture and storage(CCS)has the risk of CO_(2)leakage,and this leakage always increases soil CO_(2)concentration,and the long-term CO_(2)stress damages crop production in farmland.Using maize,the growth characte... CO_(2)capture and storage(CCS)has the risk of CO_(2)leakage,and this leakage always increases soil CO_(2)concentration,and the long-term CO_(2)stress damages crop production in farmland.Using maize,the growth characteristics,such as plant height and yield,and physiological indexes(osmoregulation substances and antioxidant enzymes)were explored under different simulative CO_(2)leakage conditions.Further,the relationship between maize physiological indexes and soil CO_(2)concentration was analyzed,showing that soil CO_(2)stress inhibited maize growth to a certain extent,resulting in shorter plants,thinner stems and lower kernel yield.With an increase in soil CO_(2)concentration,the contents of malondialdehyde,soluble sugar and soluble protein in maize leaves increased;with continuing stress,the increase rate of malondialdehyde was greatly augmented,whereas the increase rates of soluble sugar and soluble protein decreased.With extended CO_(2)stress,the activity of the enzyme superoxide dismutase(SOD)increased continuously,while the activities of catalase and peroxidase first increased and then decreased.Superoxide dismutase activity was closely correlated with soil CO_(2)concentration(r=0.762),and responded quickly to the change of soil CO_(2)concentration(R~2=0.9951).Therefore,SOD plays an important role in maize resistance to soil CO_(2)stress.This study will help further understanding of the mechanism of maize tolerance to soil CO_(2)stress,providing a theoretical basis for agricultural production in CCS project areas. 展开更多
关键词 CO_(2)capture and storage CO_(2)leakage soil CO_(2)stress antioxidant enzyme system MAIZE
下载PDF
Potential effects of sea level rise on the soil-atmosphere green-house gas emissions in Kandelia obovata mangrove forests
16
作者 Jiahui Chen Shichen Zeng +3 位作者 Min Gao Guangcheng Chen Heng Zhu Yong Ye 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第4期25-32,共8页
Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxid... Mangrove forests are under the stress of sea level rise(SLR)which would affect mangrove soil biogeochemistry.Mangrove soils are important sources of soil-atmosphere greenhouse gas(GHG)emissions,including carbon dioxide(CO_(2)),methane(CH_(4))and nitrous oxide(N_(2)O).Understanding how SLR influences GHG emissions is critical for evaluating mangrove blue carbon capability.In this study,potential effects of SLR on the GHG emissions were quantified through static closed chamber technique among three sites under different intertidal elevations,representing tidal flooding situation of SLR values of 0 cm,40 cm and 80 cm,respectively.Compared with Site SLR 0 cm,annual CO_(2) and N_(2)O fluxes decreased by approximately 75.0%and 27.3%due to higher soil water content,lower salinity and soil nutrient environments at Site SLR 80 cm.However,CH_(4) fluxes increased by approximately 13.7%at Site SLR 40 cm and 8.8%at Site SLR 80 cm because of lower salinity,higher soil water content and soil pH.CO_(2)-equivalent fluxes were 396.61 g/(m^(2)·a),1423.29 g/(m^(2)·a)and 1420.21 g/(m^(2)·a)at Sites SLR 80 cm,SLR 40 cm and SLR 0 cm,respectively.From Site SLR 0 cm to Site SLR 80 cm,contribution rate of N_(2)O and CH_(4) increased by approximately 7.42%and 3.02%,while contribution rate of CO_(2) decreased by approximately 10.44%.The results indicated that warming potential of trace CH_(4) and N_(2)O was non-negligible with SLR.Potential effects of SLR on the mangrove blue carbon capability should warrant attention due to changes of all three greenhouse gas fluxes with SLR. 展开更多
关键词 carbon dioxide METHANE nitrous oxide CO_(2)-equivalent fluxes sea level rise mangrove forest
下载PDF
我国东部山地针阔混交林碳通量特征分析
17
作者 孙彦坤 张胤洲 +6 位作者 姚维杰 叶京 张峻搏 潘小乐 刘兰忠 王自发 程雪玲 《中国环境科学》 EI CAS CSCD 北大核心 2024年第6期3492-3501,共10页
以浙江省金华市武义县大毛尖山为研究区域,开展复杂山地森林生态系统碳汇能力的观测研究,并利用涡动相关法在2022年6月~2023年5月进行观测,经过数据质量控制和质量评价分析,得到42%的优质CO_(2)通量数据.结果表明,大毛尖山周边以针阔混... 以浙江省金华市武义县大毛尖山为研究区域,开展复杂山地森林生态系统碳汇能力的观测研究,并利用涡动相关法在2022年6月~2023年5月进行观测,经过数据质量控制和质量评价分析,得到42%的优质CO_(2)通量数据.结果表明,大毛尖山周边以针阔混交林为主,能量闭合度为0.89,能够很好的代表站点通量情况.CO_(2)通量在日尺度上均表现为U型变化,范围为-1.20~0.89mgCO_(2)/(m^(2)·s).四季碳汇能力强弱依次为,夏季、春季、秋季、冬季;各月份净生态系统碳交换量(NEE)均为负值,整体表现为碳汇.CO_(2)通量与气象因子中的空气温度呈负相关,相对湿度和平均风速正相关,夜间因呼吸作用产生的CO_(2)通量与土壤温度正相关.本研究初步解释了大毛尖山森林生态系统的碳汇特征. 展开更多
关键词 CO_(2)通量 涡动相关法(EC) 净生态系统碳交换量(NEE) 森林生态系统 复杂地形
下载PDF
三江平原小叶章湿地土壤的CO_2通量 被引量:15
18
作者 李兆富 吕宪国 +1 位作者 杨青 高俊琴 《南京林业大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第3期51-54,共4页
采用密闭箱动态测量法对三江平原小叶章典型湿地土壤CO2通量进行了研究。结果表明,小叶章湿地土壤CO2通量有明显的季节变化和日变化,并且呈现出一定的规律性。7~10月,土壤CO2通量呈现出季节变化的单峰模式。在1d的观测期间,土壤CO2通... 采用密闭箱动态测量法对三江平原小叶章典型湿地土壤CO2通量进行了研究。结果表明,小叶章湿地土壤CO2通量有明显的季节变化和日变化,并且呈现出一定的规律性。7~10月,土壤CO2通量呈现出季节变化的单峰模式。在1d的观测期间,土壤CO2通量从早晨开始增大,到午后达到极大值,后逐渐降低到第2天凌晨达极小值,然后又开始增加。研究同时表明小叶章湿地土壤CO2通量的主要影响因素为地温(相关系数为0.7699)。而因湿地环境土壤水分充足,土壤含水量对土壤CO2通量的影响不明显,当土壤水分不成为限制因素时,土壤CO2通量与土壤温度呈正相关。根据测量结果,小叶章湿地土壤CO2通量在整个测量期间的变化范围为0.208~1.265g/(m2·h),平均水平为0.619g/(m2·h)。 展开更多
关键词 三江平原 小叶章 湿地土壤 CO2通量 地温 密闭箱动态测量法
下载PDF
土壤CO_2浓度昼夜变化及其对土壤CO_2排放量的影响 被引量:36
19
作者 梁福源 宋林华 王静 《地理科学进展》 CSCD 北大核心 2003年第2期170-176,共7页
对石林地区两个研究点土下20、40和60cm土壤CO2浓度和土壤CO2排放量的昼夜变化进行的研究表明二者之间具有一定的正相关关系,因此土壤CO2排放量除受环境因子影响之外,还受土壤CO2浓度所控制。土壤CO2浓度和土壤CO2排放量之间的相关关系... 对石林地区两个研究点土下20、40和60cm土壤CO2浓度和土壤CO2排放量的昼夜变化进行的研究表明二者之间具有一定的正相关关系,因此土壤CO2排放量除受环境因子影响之外,还受土壤CO2浓度所控制。土壤CO2浓度和土壤CO2排放量之间的相关关系可以用来解释土壤有机碳含量及温度对土壤CO2排放量的影响,即土壤有机碳含量高和温度升高是通过影响土壤空气中CO2的形成速率,导致土壤CO2浓度升高,从而促进土壤CO2的排放。 展开更多
关键词 土壤C02浓度 土壤C02排放 相关关系
下载PDF
典型农业流域不同类型池塘水体CO_(2)排放特征
20
作者 陈嘉宁 肖启涛 +6 位作者 刘臻婧 肖薇 谢晖 罗菊花 邱银国 胡正华 段洪涛 《湖泊科学》 EI CAS CSCD 北大核心 2024年第1期88-98,共11页
内陆水体是大气CO_(2)收支估算的重要组成部分。农业流域分布着大量池塘景观水体,且具备蓄洪抗旱、消纳污染、水产养殖等多种功能。但是,农业流域不同功能的小型池塘CO_(2)排放特征尚不清楚。本研究以极具农业流域代表性的烔炀河流域为... 内陆水体是大气CO_(2)收支估算的重要组成部分。农业流域分布着大量池塘景观水体,且具备蓄洪抗旱、消纳污染、水产养殖等多种功能。但是,农业流域不同功能的小型池塘CO_(2)排放特征尚不清楚。本研究以极具农业流域代表性的烔炀河流域为研究对象,选取流域中用于水产养殖(养殖塘)、生活污水承纳(村塘)、农业灌溉(农塘)、蓄水(水塘)的4个功能不同的景观池塘,基于为期1年的野外实地观测,以明确农业流域小型池塘CO_(2)排放特征。结果表明,不同功能池塘水体CO_(2)排放差异显著,受养殖活动、生活污水输入和农田灌溉等人类活动影响,养殖塘((80.37±100.39)mmol/(m^(2)·d))、村塘((48.69±65.89)mmol/(m^(2)·d))和农塘((13.50±15.81)mmol/(m^(2)·d))是大气CO_(2)的热点排放源,其CO_(2)排放通量分别是自然蓄水塘((4.52±23.26)mmol/(m^(2)·d))的18、11和3倍。统计分析也表明,该流域池塘CO_(2)排放变化总体上受溶解氧、营养盐等因素驱动。4个不同景观池塘CO_(2)排放通量全年均值为(37.31±67.47)mmol/(m^(2)·d),是不容忽视的CO_(2)排放源,其中养殖塘和村塘具有较高的CO_(2)排放潜力,在未来研究中需要重点关注。 展开更多
关键词 农业流域 池塘 CO_(2)通量 影响因子
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部