期刊文献+
共找到3,084篇文章
< 1 2 155 >
每页显示 20 50 100
Analytical model for predicting time-dependent lateral deformation of geosynthetics-reinforced soil walls with modular block facing
1
作者 Luqiang Ding Chengzhi Xiao Feilong Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期711-725,共15页
To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general... To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed. 展开更多
关键词 GEOSYNTHETICS Creep behavior Geosynthetics-reinforced soil(GRS)walls Lateral deformation Analytical model
下载PDF
Average temperature calculation for straight single-row-piped frozen soil wall 被引量:8
2
作者 XiangDong Hu SiYuan She RuiZhi Yu 《Research in Cold and Arid Regions》 2011年第2期124-131,共8页
The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen s... The average temperature of frozen soil wall is an essential parameter in the process of design, construction, and safety manage- ment of artificial ground freezing engineering. It is the basis of calculating frozen soil's mechanical parameters, fiarther prediction of bearing capacity and, ultimately, safety evaluation of the frozen soil wall. Regarding the average temperature of sin- gle-row-piped frozen soil wall, this paper summarizes several current calculation methods and their shortcomings. Furthermore, on the basis of Bakholdin's analytical solution for the temperature field under straight single-row-piped freezing, two new calcula- tion models, namely, the equivalent trapezoid model and the equivalent triangle model, are proposed. These two approaches are used to calculate the average temperature of a certain cross section which indicates the condition of the whole frozen soil wall. Considering the possible parameter range according to the freezing pipe layout that might be applied in actual construction, this paper compares the average temperatures of frozen soil walls obtained by the equivalent trapezoid method and the equivalent tri- angle method with that obtained by numerical integration of Bakholdin's analytical solution. The results show that the discrepancies are extremely small and these two new approaches are better than currently prevailing methods. However, the equivalent triangle method boasts higher accuracy and a simpler formula compared with the equivalent trapezoid method. 展开更多
关键词 artificial ground freezing single-row-piped freezing frozen soil wall average temperature equivalent trapezoid method equivalent triangle method Bakholdin's solution
下载PDF
Seismic stability of reinforced soil walls under bearing capacity failure by pseudo-dynamic method 被引量:6
3
作者 阮晓波 孙树林 《Journal of Central South University》 SCIE EI CAS 2013年第9期2593-2598,共6页
In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by c... In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work. 展开更多
关键词 reinforced soil walls seismic stability against bearing capacity seismic active force pseudo-dynamic method
下载PDF
Predicting seismic permanent displacement of soil walls under surcharge based on limit analysis approach 被引量:2
4
作者 Mohammad Mahdi Aminpour Mohammad Maleki Ali Ghanbari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第4期747-759,共13页
Seismic permanent displacement of the soil walls plays an important role in design of these structures. Due to the increase in growth of urban areas and the limitations in use of flat grounds, many structures are buil... Seismic permanent displacement of the soil walls plays an important role in design of these structures. Due to the increase in growth of urban areas and the limitations in use of flat grounds, many structures are built near slopes and retaining walls. During earthquakes, these structures can apply an additional surcharge on the wall. The intensity and location of the surcharge is of considerable importance on the seismic displacements of the soil wall. In this study, by using the limit analysis and upper bound theorem, seismic permanent displacement of the soil wall under surcharge has been analyzed. Thus, a formulation is presented for calculating the yield acceleration and seismic displacement for different surcharge conditions. The effect of seismic acceleration, surcharge intensity, its location and soil properties is investigated. A parameter called the "displacement coefficient" is proposed, and is a potential modification for Newmark’s sliding-block method. 展开更多
关键词 limit analysis SURCHARGE soil wall seismic displacement yield acceleration
下载PDF
Determination and Analysis on Heat of Trapezoidal Soil Wall in Solar Greenhouse
5
作者 Qing BAI Yahong ZHANG +1 位作者 Lixin Sun Meiqi FEN 《Agricultural Science & Technology》 CAS 2017年第12期2596-2602,共7页
Solar greenhouse with trapezoidal soil wall is widely used due to its good heat retaining property and cost efficiency.In this study, solar irradiance, heat flux and the temperature 0.05 and 0.3 m from the inner surfa... Solar greenhouse with trapezoidal soil wall is widely used due to its good heat retaining property and cost efficiency.In this study, solar irradiance, heat flux and the temperature 0.05 and 0.3 m from the inner surface of the wall at the upper,middle and lower measured positions were determined to study the thermal condition of the trapezoidal soil wall in solar greenhouse. The results showed: first, both the solar irradiance and the temperature increased from the upper to the lower measured position. Second, the heat absorption also increased from the upper to the lower measured position. In clear day, the heat absorption at the three measured positions accounted for 31.4%, 32.6% and 36.0% of the total amount of heat absorption of the whole wall. In cloudy day, the heat absorption at the three measured positions were 0.249, 0.370 and 0.440 MJ/m^2, which accounted for 23.5%, 35.0% and 41.4% of the total amount of heat absorption of the whole wall. When P<0.05, the heat fluxes were strikingly different between the upper and lower measured positions. But when P<0.01, the heat flux had no big difference among the three measured positions. Third, in clear day, the heat emission was the biggest at the middle measured position and smallest at the upper measured position. The heat emission at the three measured positions accounted for 27.5%, 36.7%and 35.8% of the total amount of heat emission of the whole wall. And the heat emission between the middle and lower measured position was not strikingly different. In cloudy day, the heat emission was the biggest at the lower measured position and smallest at the upper measured position. The average heat emission at the three measured positions accounted for 26.1%,36.4% and 37.4% of the total amount of heat emission of the whole wall. Fourthly, correlativity, the solar irradiance directly influenced the heat absorption and had close relation with heat emission. And heat emission again had close relation with the temperature in the greenhouse. Solar irradiance directly influences the thermal condition of a solar green house. It is hoped that this study can be referred to optimize trapezoidal structure and to improve the thermal conditions of the solar greenhouse. 展开更多
关键词 Solar Greenhouse soil wall HEAT
下载PDF
Influence of variables related to soil weathering on the geomechanical performance of tropical soils 被引量:1
6
作者 Rodrigo Cesar Pierozan Gregorio Luís Silva Araújo +1 位作者 Ennio Marques Palmeira Celso Romanel 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2423-2440,共18页
This paper presents an experimental and analytical investigation of the influence of variables related to soil weathering on the geomechanical performance of sand-silt mixtures containing lateritic soils,i.e.intensely... This paper presents an experimental and analytical investigation of the influence of variables related to soil weathering on the geomechanical performance of sand-silt mixtures containing lateritic soils,i.e.intensely weathered tropical soils with the influence of interparticle bonding.The sand-silt mixtures containing different relative proportions between uniform sand and lateritic soil were produced,and geomechanical soil characterization tests were performed.Based on the results,a transition from a primarily coarse-to a fine-grained prevailing soil structure was found to cause considerable impact on the geomechanical performance of these soils,as evidenced by design variables related to soil mineralogy and size distribution characteristics.Specifically,fines contents of both individual soil particles and soil aggregations were found to correlate with experimental results,while the relative proportion between sesquioxides(aluminum,and iron oxides),and silica,i.e.sesquioxide-silica ratios(SSR^(-1)),facilitated estimates concerning changes in geomechanical performance.Finally,the application of the sandsilt mixtures containing lateritic soil on soil walls reinforced with polymeric strips was also evaluated,further emphasizing the potential advantages of adopting variables related to soil weathering on design guidelines concerning tropical soils. 展开更多
关键词 Sesquioxides-silica ratio Tropical soils Sand-silt mixtures Lateritic soil Reinforced soil walls
下载PDF
Performance of a Nonwoven Geotextile Reinforced Wall with Unsaturated Fine Backfill Soil
7
作者 Femando Henrique Martins Portelinha Benedito de Souza Bueno Jorge Gabriel Zomberg 《Journal of Civil Engineering and Architecture》 2013年第10期1253-1259,共7页
The use of marginal backfills in GSE (geosynthetic stabilized earth) walls has not been recommended by different standards specifications. Restrictions are motivated by the poor hydraulic conductivity of fine soils ... The use of marginal backfills in GSE (geosynthetic stabilized earth) walls has not been recommended by different standards specifications. Restrictions are motivated by the poor hydraulic conductivity of fine soils that are capable of developing of water pressures. However, the use of granular materials can expend the cost of the construction. As a result, local soils, granular or not, have been increasingly used. Unsaturated conditions of fine soils may result in convenient performance even using extensible reinforcements. This paper evaluates the performance of a full scale model of a nonwoven geotextile reinforced wall constructed with fine grained soil backfill. The unsaturated condition was maintained and matric suctions, displacements and reinforcement strains were monitored during the test. Results have shown that the unsaturated condition of the backfill allowed maximum reinforcement peak strain of 0.4 %. For the case of a wrap faced wall on a firm foundation the performance and good agreement between measured strains and factors of safety from limit equilibrium analyses have shown the maintenance of unsaturated conditions as an economical alternative to the use of high quality fill. 展开更多
关键词 Reinforced soil wall nonwoven geotextile fine soil unsaturated soil.
下载PDF
A case study on behaviors of composite soil nailed wall with bored piles in a deep excavation 被引量:7
8
作者 ZHU Feng-bin MIAO Lin-chang +1 位作者 GU Huan-da CHENG Yue-hong 《Journal of Central South University》 SCIE EI CAS 2013年第7期2017-2024,共8页
A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed w... A complete case of a deep excavation was explored. According to the practical working conditions, a 3D non-linear finite element procedure is used to simulate a deep excavation supported by the composite soil nailed wall with bored piles in soft soil. The modified cam clay model is employed as the constitutive relationship of the soil in the numerical simulation. Results from the numerical analysis are fitted well with the field data, which indicate that the research approach used is reliable. Based on the field data and numerical results of the deep excavation supported by four different patterns of the composite soil nailed wall, the significant corner effect is founded in the 3D deep excavation. If bored piles or soil anchors are considered in the composite soil nailed wall, they are beneficial to decreasing deformations and internal forces of bored piles, cement mixing piles, soil anchors, soil nailings and soil around the deep excavation. Besides, the effects due to bored piles are more significant than those deduced from soil anchors. All mentioned above prove that the composite soil nailed wall with bored piles is feasible in the deep excavation. 展开更多
关键词 deep excavation 3D non-linear finite element bored pile composite soil nailed wall corner effect DEFORMATION internal force
下载PDF
Soil bentonite wall protects foundation from thrust faulting: analyses and experiment 被引量:1
9
作者 Meysam Fadaee I. Anastasopoulos +2 位作者 G. Gazetas M.K. Jafari M. Kamalian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第3期473-486,共14页
When seismic thrust faults emerge on the ground surface, they are particularly damaging to buildings, bridges and lifelines that lie on the rupture path. To protect a structure founded on a rigid raft, a thick diaphra... When seismic thrust faults emerge on the ground surface, they are particularly damaging to buildings, bridges and lifelines that lie on the rupture path. To protect a structure founded on a rigid raft, a thick diaphragm-type soil bentonite wall (SBW) is installed in front of and near the foundation, at sufficient depth to intercept the propagating fault rupture. Extensive numerical analyses, verified against reduced-scale (1 g) split box physical model tests, reveal that such a wall, thanks to its high deformability and low shear resistance, "absorbs" the compressive thrust of the fault and forces the rupture to deviate upwards along its length. As a consequence, the foundation is left essentially intact. The effectiveness of SBW is demonstrated to depend on the exact location of the emerging fault and the magnitude of the fault offset. When the latter is large, the unprotected foundation experiences intolerable rigid-body rotation even if the foundation structural distress is not substantial. 展开更多
关键词 soil bentonite wall fault rupture soil-structure interaction seismic hazard mitigation tectonic deformation soil-foundation interaction
下载PDF
Seismic responses of the steel-strip reinforced soil retaining wall with full-height rigid facing from shaking table test 被引量:4
10
作者 CAO Li-cong FU Xiao +3 位作者 WANG Zhi-jia ZHOU Yong-yi LIU Fei-cheng ZHANG Jian-jing 《Journal of Mountain Science》 SCIE CSCD 2018年第5期1137-1152,共16页
To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacement... To investigate the seismic response of the steel-strip reinforced soil retaining wall with fullheight rigid facing in terms of the acceleration in the backfill, dynamic earth pressure in the backfill, the displacements on the facing and the dynamic reinforcement strain distribution under different peak acceleration, a large 1-g shaking table test was performed on a reduced-scale reinforced-earth retaining wall model. It was observed that the acceleration response in non-strip region is greater than that in potential fracture region which is similar with the stability region under small earthquake,while the acceleration response in potential fracture region is greater than that in stability region in middle-upper of the wall under moderately strong earthquakes. The potential failure model of the rigid wall is rotating around the wall toe. It also was discovered that the Fourier spectra produced by the inputting white noises after seismic wave presents double peaks, rather than original single peak, and the frequency of the second peak trends to increase with increasing the PGA(peak ground amplitude) of the excitation which is greater than 0.4 g. Additionally,the non-liner distribution of strip strain along the strips was observed, and the distribution trend was not constant in different row. Soil pressure peak value in stability region is larger than that in potential fracture region. The wall was effective under 0.1 g-0.3 g seismic wave according to the analyses of the facing displacement and relative density. Also, it was discovered that the potential failure surface is corresponds to that in design code, but the area is larger. The results from the study can provide guidance for a more rational design of reinforced earth retaining walls with full-height rigid facing in the earthquake zone. 展开更多
关键词 Reinforced soil retaining walls Potentialfailure surface Full-height RIGID FACING STEEL STRIP Seismic behaviors 1-g SHAKING table test
下载PDF
Non-limit passive soil pressure on rigid retaining walls 被引量:7
11
作者 Dou Guotao Xia Junwu +2 位作者 YU Wenjie Yuan Fang Bai Weigang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期581-587,共7页
This paper aims to reveal the depth distribution law of non-limit passive soil pressure on rigid retaining wall that rotates about the top of the wall(rotation around the top(RT) model). Based on Coulomb theory, the d... This paper aims to reveal the depth distribution law of non-limit passive soil pressure on rigid retaining wall that rotates about the top of the wall(rotation around the top(RT) model). Based on Coulomb theory, the disturbance degree theory, as well as the spring-element model, by setting the rotation angle of the wall as the disturbance parameter, we establish both a depth distribution function for sand and a nonlinear depth distribution calculation method for the non-limit passive soil pressure on a rigid retaining wall under the RT model, which is then compared with experiment. The results suggest that under the RT model: the non-limit soil pressure has a nonlinear distribution; the backfill disturbance degree and the lateral soil pressure increase with an increase in the wall rotation angle; and, the points where the resultant lateral soil pressure acts on the retaining wall are less than 2/3 of the height of the wall. The soil pressure predicted by the theoretical calculation put forward in this paper are quite similar to those obtained by the model experiment, which verifies the theoretical value, and the engineering guidance provided by the calculations are of significance. 展开更多
关键词 RT model Rigid wall Non-limit passive soil pressure Spring element Genetic algorithm
下载PDF
Comparison of Seismic Design Codes between China and the United States for Reinforced Soil Retaining Walls
12
作者 XU Peng TIAN Hongcheng +1 位作者 JIANG Guanlu WANG Zhimeng 《Earthquake Research in China》 CSCD 2019年第1期147-152,共6页
Because of its excellent seismic performance, reinforced soil retaining walls are increasingly used in civil engineering. Although many countries have published corresponding design codes, the differences between them... Because of its excellent seismic performance, reinforced soil retaining walls are increasingly used in civil engineering. Although many countries have published corresponding design codes, the differences between them are still relatively large. Using the FHWA Code and the Code for Seismic Design of Railway Engineering(CSDRE), stability calculations of reinforced soil retaining walls were carried out and the similarities and differences between these two design codes were analyzed. According to the comparative analysis, the following conclusions are drawn: the inertia force, the earth pressure and the tensile force of reinforcements calculated from the CSDRE are less than those from the FHWA Code, and the safety factor calculated from the former is larger. Although the M-O method is recommended to calculate the dynamic earth pressure, the FHWA Code suggests a higher action point as compared to the CSDRE. 展开更多
关键词 SEISMIC performance Reinforced soil retaining wall INERTIA FORCE Earth pressure TENSILE FORCE
下载PDF
筋材布设方式对加筋土挡墙动力响应的影响 被引量:1
13
作者 靳静 张森 +2 位作者 李智广 梁小勇 于远亮 《河北科技大学学报》 CAS 北大核心 2024年第1期82-90,共9页
针对目前加筋土挡墙设计和施工中筋材布设方式大多为等长形的问题,提出一种倒梯形的筋材布设方式,并基于挡墙位移分区理论和有限差分Flac^(3D)数值模拟,建立加筋土挡墙三维分析模型,探讨不同峰值加速度下3种加筋土挡墙对位移、水平土压... 针对目前加筋土挡墙设计和施工中筋材布设方式大多为等长形的问题,提出一种倒梯形的筋材布设方式,并基于挡墙位移分区理论和有限差分Flac^(3D)数值模拟,建立加筋土挡墙三维分析模型,探讨不同峰值加速度下3种加筋土挡墙对位移、水平土压力、筋材拉应力及潜在破裂面的影响。结果表明,随峰值加速度增大,挡墙位移逐渐增大,同一荷载作用下,改变筋材布设方式,侧向水平位移减少9.3%,竖向沉降减少5.3%;3种形式挡墙水平土压力相差不大,最大水平土压力分布在挡墙的中下部;筋材拉应力随峰值加速度的增大,沿墙高从单峰型转化为双峰型分布,最大值位于挡墙中下部;潜在破裂面填土区破裂带的形状与筋材的布设方式有关。所提出的倒梯形筋材布设方式对加筋土挡墙的抗震效果更好,可为施工设计中加筋土挡墙筋材布设提供参考。 展开更多
关键词 地基基础工程 加筋土挡墙 位移分区理论 数值模拟 布筋形式 抗震性能
下载PDF
深基坑支护理念演进和设计方法改进剖析 被引量:3
14
作者 李连祥 侯颖雪 +2 位作者 陈天宇 邢宏侠 贾斌 《建筑结构》 北大核心 2024年第13期126-132,共7页
基于我国30多年建设实践,分析现有深基坑支护临时性理念、与主体结构相结合理念实施的优点和不足,提出促进基坑支护工程高质量发展的永久化理念。结合济南某基坑工程,阐释三个理念的逐次提升和相应支护结构的计算内容,定义适应与主体结... 基于我国30多年建设实践,分析现有深基坑支护临时性理念、与主体结构相结合理念实施的优点和不足,提出促进基坑支护工程高质量发展的永久化理念。结合济南某基坑工程,阐释三个理念的逐次提升和相应支护结构的计算内容,定义适应与主体结构相结合理念、永久化理念的结构岩土化、岩土结构化设计方法;重点分析土钉墙与抗浮锚杆相结合的复合土钉墙的设计,以及抗浮锚杆与外伸支撑、水平楼板永久支护结构中抗浮锚杆的力学性状与耐久性,分析了永久支护对于地下室外墙受力机制的影响,阐释深基坑支护理念演化方向和与之适应的设计改进内容。对于反思我国岩土与结构设计管理体制,促进基坑与基础设计理论和方法进步,推动“新发展理念”在基坑工程的实践具有导向价值。 展开更多
关键词 基坑工程 深基坑支护理念 结构岩土化 岩土结构化 永久支护结构 复合土钉墙
下载PDF
Recent Vegetation Cover Dynamics and Climatic Parameters Evolution Study in the Great Green Wall of Senegal 被引量:1
15
作者 Bi Tra Olivier Gore Angora Aman +1 位作者 Yves Kouadio Ody-Marc Duclos 《Journal of Environmental Protection》 CAS 2023年第4期254-284,共31页
The drought recorded in 1970s and 1980s, particularly in the Sahara and Sahel region has greatly affected the population as well as the economies and the eco-systems of this area. In 2007, the African Union launched a... The drought recorded in 1970s and 1980s, particularly in the Sahara and Sahel region has greatly affected the population as well as the economies and the eco-systems of this area. In 2007, the African Union launched a Pan-African program, the Great Green Wall for the Sahara, the Sahel Initiative (GGWSSI) to reverse land degradation and desertification by planting a wall of trees stretching from Dakar to Djibouti. The objective is to improve food security, and support local people to adapt to climate change. This paper aims to evaluate the impacts of the reforestation program in Senegal, fifteen years after it was launched. This study uses a time series of satellite-derived vegetation cover and climatic parameters data to analyze the sustainability of these interventions. Change detection approaches were applied to identify and characterize the drives of the eventual changes. A comparative analysis of reforestation on climatic parameters was explored through the temporal analysis of the vegetation index over the periods 2000-2008 and 2009-2020. An increase in vegetation activity was noted through the NDVI at the interannual (+2% to +8%) and seasonal (+1.5% to 7% for the wet season and 1% to 4% for the dry season) scale and a positive and significant evolution is noted on the trace of the GGW. Also, the period 2009-2020 recorded an increase in rainfall of 2% to 8% of the average value 2000-2020 and 4% to 8% of the rainy season. Soil moisture is the climatic parameter that has increased the most, with an increase of 25% to 54% of the 2000-2020 average, i.e. between 20 mm and 70 mm more. This study shows a significant improvement in the relationship between NDVI and climate parameters after the different reforestation actions of the GGW. 展开更多
关键词 Great Green wall of Senegal Vegetation Index PRECIPITATION soil Moisture
下载PDF
塑性混凝土咬合桩防渗墙变形机理研究 被引量:2
16
作者 梁超 李斌 +2 位作者 刘润 朱楠 李青欣 《河北工程大学学报(自然科学版)》 CAS 2024年第1期23-32,51,共11页
以大连湾沉管隧道南岸港池临时围堰工程监测数据为基础,建立了塑性混凝土咬合桩防渗墙数值计算模型,通过实测数据验证了模型的准确性,分析了不同影响因素下咬合桩防渗墙的变形演化规律,结论表明:水压力相比土压力对咬合桩变形和内力的... 以大连湾沉管隧道南岸港池临时围堰工程监测数据为基础,建立了塑性混凝土咬合桩防渗墙数值计算模型,通过实测数据验证了模型的准确性,分析了不同影响因素下咬合桩防渗墙的变形演化规律,结论表明:水压力相比土压力对咬合桩变形和内力的影响更为显著,水压力增大导致桩身变形和弯矩增大,扰动临时围堰土体;土体坡度的影响较小,但土体坡度应逐渐放缓,不小于1∶1.5;桩长的变化对变形影响较大,较短的桩身未嵌固在岩石中,较长的桩身在桩顶出现最大位移;随着桩径增大,桩顶变形和最大弯矩逐渐增大,弯矩分布较为一致。 展开更多
关键词 咬合桩 防渗墙 水压力 土压力
下载PDF
台阶级数对加筋土挡墙地震动力响应影响研究
17
作者 梁小勇 李智广 +2 位作者 张森 靳静 邵明杰 《河北工业科技》 CAS 2024年第4期255-262,共8页
为了优化加筋土挡墙的结构设计,研究了台阶级数对加筋土挡墙抗震性能的影响程度。基于Flac3D软件建立了加筋土挡墙数值模型,探讨了不同地震峰值加速度(peak ground acceleration,PGA)下不同台阶级数加筋土挡墙的侧向位移、竖向沉降、加... 为了优化加筋土挡墙的结构设计,研究了台阶级数对加筋土挡墙抗震性能的影响程度。基于Flac3D软件建立了加筋土挡墙数值模型,探讨了不同地震峰值加速度(peak ground acceleration,PGA)下不同台阶级数加筋土挡墙的侧向位移、竖向沉降、加速度响应和水平土压力的变化规律。结果表明:4 m/s^(2)峰值加速度下,增加台阶级数,侧向位移减小了61.9%,竖向沉降减小了20.5%;PGA放大系数随着台阶级数的增加而增大,其中加筋区PGA放大系数略大于面板处PGA放大系数;1级加筋土挡墙最大水平土压力位于墙脚处,2,3级加筋土挡墙最大水平土压力位于台阶分级处;水平土压力在台阶分级处大于规范计算值。增加台阶级数能够提升加筋土挡墙的抗震性能,可为实际工程中加筋土挡墙的分级设计提供理论参考。 展开更多
关键词 地基基础工程 加筋土挡墙 台阶级数 数值模拟 抗震性能
下载PDF
深基坑斜直交替钢管桩复合土钉墙数值模拟分析 被引量:1
18
作者 康剑伟 《路基工程》 2024年第1期118-123,共6页
依托福建某医院的基坑工程实例,采用数值模拟方法,研究斜直交替钢管桩复合土钉墙支护结构的变形特征及其稳定性。结果表明:坡面水平位移最大变形出现在基坑“腰部”,设计时应适当加强此位置的变形控制;斜直交替钢管桩复合土钉墙支护体... 依托福建某医院的基坑工程实例,采用数值模拟方法,研究斜直交替钢管桩复合土钉墙支护结构的变形特征及其稳定性。结果表明:坡面水平位移最大变形出现在基坑“腰部”,设计时应适当加强此位置的变形控制;斜直交替钢管桩复合土钉墙支护体系安全可行,其较双排直立钢管桩复合土钉墙及单一土钉墙有更好的变形控制能力和更高的稳定性。 展开更多
关键词 深基坑 斜直交替钢管桩 复合土钉墙 稳定性 位移监测
下载PDF
饱和黏性土地基中邻近圆形基坑相互影响分析
19
作者 谢万东 李建宇 赖俊珊 《地下空间与工程学报》 CSCD 北大核心 2024年第S01期440-445,共6页
间距很小的圆形基坑后方土压力分布复杂,很难判断考虑圆拱效应的竖向弹性地基梁法和三维弹性地基板法的适用性。采用三维连续介质有限元法对位于饱和黏性土中2个间距很小的由地下连续墙组成的圆形事故应急池基坑进行整体建模分析。结果... 间距很小的圆形基坑后方土压力分布复杂,很难判断考虑圆拱效应的竖向弹性地基梁法和三维弹性地基板法的适用性。采用三维连续介质有限元法对位于饱和黏性土中2个间距很小的由地下连续墙组成的圆形事故应急池基坑进行整体建模分析。结果表明,对于1号池开挖到底后和2号池开挖到底后2种工况,地下连续墙的最大水平位移和最大弯矩的差异都不大。基坑位移和竖向弯矩的实测结果与计算值也较为接近。2个相邻圆形基坑在间距很小的情况下,其相互影响也是非常有限的。圆形地下连续墙支护结构对周围土体刚度参数的变化不敏感。采用三维连续介质有限元法对圆形地下连续墙支护结构进行计算分析,得到的结构内力远小于考虑圆拱效应的竖向弹性地基梁法和三维弹性地基板法,在经济性上有明显优势。 展开更多
关键词 圆形基坑 地下连续墙 饱和黏性土 三维连续介质有限元法
下载PDF
重力式码头升级改造板桩墙后土压力分布
20
作者 彭志豪 陈海燕 《水运工程》 2024年第4期37-41,共5页
针对重力式码头升级改造新建板桩墙方案板桩墙后土压力分布问题,开展新建板桩墙距已有重力式墙身不同距离的土压力分布规律研究。采用有限元数值模拟和理论公式计算对比分析,得出作用在前板桩墙上的土压力小于理论主动土压力,即存在贮... 针对重力式码头升级改造新建板桩墙方案板桩墙后土压力分布问题,开展新建板桩墙距已有重力式墙身不同距离的土压力分布规律研究。采用有限元数值模拟和理论公式计算对比分析,得出作用在前板桩墙上的土压力小于理论主动土压力,即存在贮仓效应的结论。建议重力式码头改造工程设置前板桩墙时,采用公式合理选取贮仓尺寸,或根据新建板桩墙距已有码头墙身的距离采用有限元计算作用在板桩墙上的土压力,避免保守或激进设计。 展开更多
关键词 重力式码头 升级改造 新建板桩墙 贮仓压力 土压力分布
下载PDF
上一页 1 2 155 下一页 到第
使用帮助 返回顶部