The impact of thermal remediation on soil function has drawn increasing attention.So far,as the most active fraction of soil organic matter,the evolution of dissolved organic matter(DOM)during the thermal remediation ...The impact of thermal remediation on soil function has drawn increasing attention.So far,as the most active fraction of soil organic matter,the evolution of dissolved organic matter(DOM)during the thermal remediation lacks in-depth investigation,especially for the temperatures value below 100℃.In this study,a series of soil thermal treatment experiments was conducted at 30,60,and 90℃ during a 90-d period,where soil DOM concentration increased with heating temperature and duration.The molecular weight,functional groups content and aromaticity of DOM all decreased during the thermal treatment.The excitation-emission matrices(EEM)results suggested that humic acid-like substances transformed into fulvic acid-like substances(FIII/FV increased from 0.27 to 0.44)during the heating process,and five DOM components were further identified by EEM-PARAFAC.The change of DOM structures and components indicated the decline of DOM stability and hydrophilicity,and can potentially change the bioavailability and mobility.Elevated temperature also resulted in the decline of DOM complexation ability,which may be caused by the loss of binding sites due to the decrease of polar function groups,aromatic structures and hydrophilic components.This study provides valuable information about the evolution of DOM during thermal remediation,which would potentially change the fate of metal ions and the effectiveness of the post-treatment technologies in the treated region.展开更多
Glycinebetaine (Glybet) accumulation, photosynthetic efficiency and growth performance in indica rice cultivated under salt stress and extreme pH stress were investigated. Betaine aldehyde dehydrogenase (BADH) act...Glycinebetaine (Glybet) accumulation, photosynthetic efficiency and growth performance in indica rice cultivated under salt stress and extreme pH stress were investigated. Betaine aldehyde dehydrogenase (BADH) activity and Glybet accumulation in the seedlings of salt-tolerant and salt-sensitive rice varieties grown under saline and acidic conditions peaked after treatment for 72 h and 96 h, respectively, and were higher than those grown under neutral pH and alkaline salt stress. A positive correlation was found between BADH activity and Glybet content in both salt-tolerant (P=0.71) and salt-sensitive (P=0.86) genotypes. The chlorophyll a, chlorophyll b, total chlorophyll and total carotenoids contents in the stressed seedlings significantly decreased under both acidic and alkaline stresses, especially in the salt-sensitive genotype. Similarly, the maximum quantum yield of PSII (Fv/Fm), photon yield of PSII (ФPSII), non-photochemical quenching (NPQ) and net photosynthetic rate (Pn) in the stressed seedlings were inhibited, leading to overall growth reduction. The positive correlations between chlorophyll a content and Fv/Fm, total chlorophyll content and ФPSII, and Pn as well as Pn and leaf area in both salt-tolerant and salt-sensitive genotypes were found. Saline acidic and saline alkaline soils may play a key role affecting vegetative growth prior to the reproductive stage in rice plants.展开更多
The correlation analysis has been used to study the relationship between spring soil moisture over China and East Asian summer monsoon (EASM). It is shown that EASM has a strong positive correlation with spring soil m...The correlation analysis has been used to study the relationship between spring soil moisture over China and East Asian summer monsoon (EASM). It is shown that EASM has a strong positive correlation with spring soil moisture over southwest China and the Great Bend region of the Yellow River. A standard soil moisture index (SMI) has been defined using the observed soil moisture of the two regions. The results show that SMI has a strong correlation with EASM. The years of strong (weak) SMI are associated with stronger (weaker) summer monsoon circulation. In the years of strong SMI, the west Pacific subtropical high is much northward in position and weaker in intensity;the westerlies zone is also more to the north. All of these make EASM circulation move northward and cause the rainfall belt to relocate to North China and Northeast China. SMI can reflect the variation of the summer rainfall anomaly over eastern China. In the years of strong SMI, the rainfall belt is mainly located over the northern part of China. However, during the weak years, the summer rainfall belt is largely located over the mid-and lower-reaches of the Yangtze River. Additionally, the SMI has obvious oscillations of quasi 4-6 years and quasi 2 years. Moreover, negative SMI predicts EASM better than positive SMI.展开更多
Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern w...Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern were studied by using the water balance method. The results suggested that soil water deficit often exists in fields of these areas. From May to June, the amount of water deficit in bare land rises to the maximum (232 8 mm) and falls to the minimum (66 6 mm) from August to September. By comparison, because of crop transpiration, both soil water deficit and dry soil layer in cultivated land are 15 1—40 4 mm more and 20—70 mm deeper respectively than those of bare land. Crops mainly planted in these areas have a relatively weak utilization ability to soil water. Winter wheat has the highest utilization ability to soil water among the crops planted in these areas. The soil water utilization ability of winter wheat is 26 2%—30 6% and winter wheat can use soil water that lies in soil layer below a depth of over 200 cm. Spring corn and millet can only consume soil water with the maximum ability of 13 4% and the deepest layer of 0—50 cm or 0—100cm, which shows that the soil water utilization ability of winter wheat is higher than that of spring crops. After crop is ripe, more than 41% of available soil water remains unused in field. So, increasing soil water storage and improving crop utilization ability to soil water by adopting efficient agrotechnique measures are the main ways for improving agricultural productivity in dry farming areas of Northern China.展开更多
Cellulose decomposing fungi play an important role in litter decomposition and are decisive in nutrient cycling in sandy land ecosystems. Thirty-one strains were isolated to select efficient cellulose decomposers, and...Cellulose decomposing fungi play an important role in litter decomposition and are decisive in nutrient cycling in sandy land ecosystems. Thirty-one strains were isolated to select efficient cellulose decomposers, and four efficient cellulose decomposing fungi (NM3-1, NM3-2, NM3-3, and NM3-4) were screened using a CMC (carboxymethyl cellulose) carbon source in dune soil of Horqin Sandy Land. They were identified as Asperigillus calidoustus, Fusarium oxysporum, Fusarium solani, and Hypocrea lixii by rDNA-ITS molecular biological methods. Cloth decomposition rates were 15.71%, 15.89%, 17.29%, and 17.89% by the four efficient decomposers incubated for 30 days, respectively. Screening of efficient cellulose decomposers can not only increase the dune soil functional microbe bank, but can also accelerate litter decom- position and available nutrient input in the Horqin Sandy Land.展开更多
The article reviews the scientific approaches to monitoring of soil condition on the soil protection agrolandscape. In 1980s, the contour-meliorative soil protection system was established on the selected fields in Uk...The article reviews the scientific approaches to monitoring of soil condition on the soil protection agrolandscape. In 1980s, the contour-meliorative soil protection system was established on the selected fields in Ukraine. The objective of the current research was to determine the capabilities of satellite survey to identify the changes of soil cover that had occurred on these fields during the past 25 years. Soil erosion processes are very dynamic, therefore it is essential to use time-series of operative satellite images to track those changes. Rills on the fields, caused by water erosion, are clearly identified on high-resolution satellite data. Erosion causes the decrease of humus content, which affects soil reflection values. This in turn leads to a corresponding change of color shade on satellite images. The research allowed to determine correlation between remote sensing data and soil organic carbon content and to acquire a mathematical model which describes this correlation. The condition of the agrolandscape soils was assessed using the regression model, which helped to evaluate erosion risk for different areas of the test polygon. The visual interpretation of satellite imagery led to a conclusion about a damaging effect of erosion on protective forest belts and accordingly on fields' soil cover and crops. Visual analysis results were approved by field research. Photos taken during the field research indicate an unsatisfactory status of forest belts and a devastating effect of eroding water flows. These are the results of irresponsible land use and constant violation of methodical principles of the contour-meliorative system organization. The article concludes that the use of time-series of high-resolution satellite imagery allows monitoring the condition of soil protection agrolandscape, in particular the forest belts' status soil cover conditions and their change over time. The research results can be used as an informational basis for the soil protection agrolandscape monitoring system.展开更多
A set of soil collapse prediction and prevention swtem for railway slopes is builtis this paper. Based on the field investisation, Oreen-Ampt model, the quantitytheory and computeraided decision-making sgutem, convere...A set of soil collapse prediction and prevention swtem for railway slopes is builtis this paper. Based on the field investisation, Oreen-Ampt model, the quantitytheory and computeraided decision-making sgutem, convereion tables ofworking rainfall ,grading tables of resistant ability to rainfall, and the warningrairifall levels are made, forming the chief part of a practical computer-aideddecisionmaking system. Usins the system, the danser degree of railway slopescan be predicted, and the reinforcins ensineerins and the flood control workcan also be arranged ratiofially.展开更多
基金supported by the National Natural Science Foundation of China(No.42077171).
文摘The impact of thermal remediation on soil function has drawn increasing attention.So far,as the most active fraction of soil organic matter,the evolution of dissolved organic matter(DOM)during the thermal remediation lacks in-depth investigation,especially for the temperatures value below 100℃.In this study,a series of soil thermal treatment experiments was conducted at 30,60,and 90℃ during a 90-d period,where soil DOM concentration increased with heating temperature and duration.The molecular weight,functional groups content and aromaticity of DOM all decreased during the thermal treatment.The excitation-emission matrices(EEM)results suggested that humic acid-like substances transformed into fulvic acid-like substances(FIII/FV increased from 0.27 to 0.44)during the heating process,and five DOM components were further identified by EEM-PARAFAC.The change of DOM structures and components indicated the decline of DOM stability and hydrophilicity,and can potentially change the bioavailability and mobility.Elevated temperature also resulted in the decline of DOM complexation ability,which may be caused by the loss of binding sites due to the decrease of polar function groups,aromatic structures and hydrophilic components.This study provides valuable information about the evolution of DOM during thermal remediation,which would potentially change the fate of metal ions and the effectiveness of the post-treatment technologies in the treated region.
基金supported by the National Center for Genetic Engineering and Biotechnology (BIOTEC) (Grant No. BT-B-06-RG-14-4502)partly funded by the International Atomic Energy Agency (IAEA) (Contract No. 12998/R0)
文摘Glycinebetaine (Glybet) accumulation, photosynthetic efficiency and growth performance in indica rice cultivated under salt stress and extreme pH stress were investigated. Betaine aldehyde dehydrogenase (BADH) activity and Glybet accumulation in the seedlings of salt-tolerant and salt-sensitive rice varieties grown under saline and acidic conditions peaked after treatment for 72 h and 96 h, respectively, and were higher than those grown under neutral pH and alkaline salt stress. A positive correlation was found between BADH activity and Glybet content in both salt-tolerant (P=0.71) and salt-sensitive (P=0.86) genotypes. The chlorophyll a, chlorophyll b, total chlorophyll and total carotenoids contents in the stressed seedlings significantly decreased under both acidic and alkaline stresses, especially in the salt-sensitive genotype. Similarly, the maximum quantum yield of PSII (Fv/Fm), photon yield of PSII (ФPSII), non-photochemical quenching (NPQ) and net photosynthetic rate (Pn) in the stressed seedlings were inhibited, leading to overall growth reduction. The positive correlations between chlorophyll a content and Fv/Fm, total chlorophyll content and ФPSII, and Pn as well as Pn and leaf area in both salt-tolerant and salt-sensitive genotypes were found. Saline acidic and saline alkaline soils may play a key role affecting vegetative growth prior to the reproductive stage in rice plants.
文摘The correlation analysis has been used to study the relationship between spring soil moisture over China and East Asian summer monsoon (EASM). It is shown that EASM has a strong positive correlation with spring soil moisture over southwest China and the Great Bend region of the Yellow River. A standard soil moisture index (SMI) has been defined using the observed soil moisture of the two regions. The results show that SMI has a strong correlation with EASM. The years of strong (weak) SMI are associated with stronger (weaker) summer monsoon circulation. In the years of strong SMI, the west Pacific subtropical high is much northward in position and weaker in intensity;the westerlies zone is also more to the north. All of these make EASM circulation move northward and cause the rainfall belt to relocate to North China and Northeast China. SMI can reflect the variation of the summer rainfall anomaly over eastern China. In the years of strong SMI, the rainfall belt is mainly located over the northern part of China. However, during the weak years, the summer rainfall belt is largely located over the mid-and lower-reaches of the Yangtze River. Additionally, the SMI has obvious oscillations of quasi 4-6 years and quasi 2 years. Moreover, negative SMI predicts EASM better than positive SMI.
文摘Based on the observed soil water data from experimental site located in southeast of Shanxi Province, the physical characteristics of soil water, crop effect on soil moisture, and the field water circulation pattern were studied by using the water balance method. The results suggested that soil water deficit often exists in fields of these areas. From May to June, the amount of water deficit in bare land rises to the maximum (232 8 mm) and falls to the minimum (66 6 mm) from August to September. By comparison, because of crop transpiration, both soil water deficit and dry soil layer in cultivated land are 15 1—40 4 mm more and 20—70 mm deeper respectively than those of bare land. Crops mainly planted in these areas have a relatively weak utilization ability to soil water. Winter wheat has the highest utilization ability to soil water among the crops planted in these areas. The soil water utilization ability of winter wheat is 26 2%—30 6% and winter wheat can use soil water that lies in soil layer below a depth of over 200 cm. Spring corn and millet can only consume soil water with the maximum ability of 13 4% and the deepest layer of 0—50 cm or 0—100cm, which shows that the soil water utilization ability of winter wheat is higher than that of spring crops. After crop is ripe, more than 41% of available soil water remains unused in field. So, increasing soil water storage and improving crop utilization ability to soil water by adopting efficient agrotechnique measures are the main ways for improving agricultural productivity in dry farming areas of Northern China.
基金financially supported by the National Science and Technology Support Program (2011BAC07B02)National Natural Science Foundation of China (41401620 and 41171414)the Key Laboratory of Desert and Desertification Foundation (KLDD-2014-010) from Cold and Arid Regions Environmental and Engineering Research Institute,CAS
文摘Cellulose decomposing fungi play an important role in litter decomposition and are decisive in nutrient cycling in sandy land ecosystems. Thirty-one strains were isolated to select efficient cellulose decomposers, and four efficient cellulose decomposing fungi (NM3-1, NM3-2, NM3-3, and NM3-4) were screened using a CMC (carboxymethyl cellulose) carbon source in dune soil of Horqin Sandy Land. They were identified as Asperigillus calidoustus, Fusarium oxysporum, Fusarium solani, and Hypocrea lixii by rDNA-ITS molecular biological methods. Cloth decomposition rates were 15.71%, 15.89%, 17.29%, and 17.89% by the four efficient decomposers incubated for 30 days, respectively. Screening of efficient cellulose decomposers can not only increase the dune soil functional microbe bank, but can also accelerate litter decom- position and available nutrient input in the Horqin Sandy Land.
文摘The article reviews the scientific approaches to monitoring of soil condition on the soil protection agrolandscape. In 1980s, the contour-meliorative soil protection system was established on the selected fields in Ukraine. The objective of the current research was to determine the capabilities of satellite survey to identify the changes of soil cover that had occurred on these fields during the past 25 years. Soil erosion processes are very dynamic, therefore it is essential to use time-series of operative satellite images to track those changes. Rills on the fields, caused by water erosion, are clearly identified on high-resolution satellite data. Erosion causes the decrease of humus content, which affects soil reflection values. This in turn leads to a corresponding change of color shade on satellite images. The research allowed to determine correlation between remote sensing data and soil organic carbon content and to acquire a mathematical model which describes this correlation. The condition of the agrolandscape soils was assessed using the regression model, which helped to evaluate erosion risk for different areas of the test polygon. The visual interpretation of satellite imagery led to a conclusion about a damaging effect of erosion on protective forest belts and accordingly on fields' soil cover and crops. Visual analysis results were approved by field research. Photos taken during the field research indicate an unsatisfactory status of forest belts and a devastating effect of eroding water flows. These are the results of irresponsible land use and constant violation of methodical principles of the contour-meliorative system organization. The article concludes that the use of time-series of high-resolution satellite imagery allows monitoring the condition of soil protection agrolandscape, in particular the forest belts' status soil cover conditions and their change over time. The research results can be used as an informational basis for the soil protection agrolandscape monitoring system.
文摘A set of soil collapse prediction and prevention swtem for railway slopes is builtis this paper. Based on the field investisation, Oreen-Ampt model, the quantitytheory and computeraided decision-making sgutem, convereion tables ofworking rainfall ,grading tables of resistant ability to rainfall, and the warningrairifall levels are made, forming the chief part of a practical computer-aideddecisionmaking system. Usins the system, the danser degree of railway slopescan be predicted, and the reinforcins ensineerins and the flood control workcan also be arranged ratiofially.