[Objective] This study was conducted to explore the effects of deep loos- ening on soil structure and the activity of maize root system, to provide a theoreti- cal basis for the efficient and rational use of water res...[Objective] This study was conducted to explore the effects of deep loos- ening on soil structure and the activity of maize root system, to provide a theoreti- cal basis for the efficient and rational use of water resources. [Method] Three differ- ent loosening treatments for maize in ridges were performed in field trials as fol- lows: conventional ridge tillage, loosening the cm in spring (deep loosening in spring), and depth of 30 cm in autumn (deep loosening in soils between rows to a depth of 30 oosening the soils between rows to a autumn). Then the soil properties and the development of root system were measured to evaluate the effects of different loosening methods. [Result] Soil compactness was significantly reduced after deep loosening in spring, There were significant differences in soil compactness in 0-20 cm depth and soil bulk density in 0-40 cm depth between deep loosening in spring and deep loosening in autumn, deep loosening in spring and conventional ridge tillage. The soil water holding capacity was also significantly different between the two deep loosening treatments and conventional ridge tillage. Moreover, the root ac- tive absorption area of maize of deep loosening in spring was higher than that of conventionai ridge tillage. [Conclusion] Deep loosening can reduce soil compactness, bulk density, and improve soil water holding capacity, soil water content and the root activity of maize. Deep loosening in spring is better in soil improvement be- cause spring is closer to the growth period of crops than autumn. So, deep loosen- ing is conducive to the improvement of soil compactness and structure.展开更多
To investigate the effects of different vegetable growing regions and planting modes on soil quality,soils in high,medium and low altitude areas of Guizhou were respectively sampled under different vegetable efficient...To investigate the effects of different vegetable growing regions and planting modes on soil quality,soils in high,medium and low altitude areas of Guizhou were respectively sampled under different vegetable efficient planting modes,and the variations of soil microbial flora and enzyme activities were analyzed. The soil microbial count and total bacteria of the vegetable efficient cultivation mode were significantly higher than that of the control (traditional planting mode) in each planting area,and the microbial diversity index was also improved to varying de- grees.The soil phosphatase,catalase and urease activities of the vegetable efficient planting mode were higher than that of the control.The soil catalase and urease activities were higher than that of the control by 1.37-1.44 and 1.51-2.80 times. Application of vegetable efficient planting mode in different regions will help to im- prove the soil quality in a given period.展开更多
[Objective] To provide a reference for exploring the relationship between Cd contamination and sugarcane growth and between Cd contamination and micro- bial properties of soil, the effects of adding different concentr...[Objective] To provide a reference for exploring the relationship between Cd contamination and sugarcane growth and between Cd contamination and micro- bial properties of soil, the effects of adding different concentrations of exogenous cadmium (Cd) on the growth of sugarcane, the quantities of soil microorganisms and the activity of soil enzymes were studied. [Method] The plant height, stem di- ameter and cane yield of sugarcane, the soil microbial quantities and enzyme activi- ties were determined by using sugarcane as a material treated with different Cd concentrations (0, 25, 50, 100, 250 and 500 mg/kg) under potted conditions. IRe- suit] The results showed that the plant height, stem diameter and the yield of sug- arcane decreased with the increase of Cd concentration in the soil, and the higher the Cd concentration, the more obvious the inhibitory effect. The Cd contamination changed the enzyme activity, and the activities of urease and acid phosphatase sig- nificantly decreased with the increase of Cd concentration, especially when the Cd concentration reached 100 mg/kg. The sensitivity of the two soil enzymes to Cd ranked as urease〉acid phosphatase. Cd contamination also changed soil microbial quantities. Fungi, bacteria and actinomycetes significantly decreased at the Cd con- centration level of 100 mg/kg. There were significant and highly significant correla- tions between Cd contamination concentration and fungi, bacteria and actinomycetes, the activities of urease and acid phosphatase, plant height, stem diameter as well as cane yield. [Conclusion] Under the conditions of potted planted sugarcane, ex- ogenous Cd contamination affected the growth of sugarcane, the quantities of soil microorclanisms and soil enzyme activities to different degrees.展开更多
The rice soil (last crop was rice) and arid red soil (last crop was corn) were used as a test material for the pot experiment. The variation of enzyme activi-ty in flue-cured tobacco-growing soil planted with diff...The rice soil (last crop was rice) and arid red soil (last crop was corn) were used as a test material for the pot experiment. The variation of enzyme activi-ty in flue-cured tobacco-growing soil planted with different last-season crops was in-vestigated at different growth stages in this study. The results showed the activity variation of the 3 enzymes differed in the 2 soils at different growth stages. The catalase activity in the arid red soil trended to decrease overal from the vigorous growing stage to harvesting stage; while it decreased gradual y in the rice soil until the harvesting stage. The phosphatase activity in the 2 soils al increased with the proceeding of growth period. The urease activity in the arid red soil decreased gradual y at different growth stages, but the variation of urease activity in rice soil was irregular. During the growth of flue-cured tobacco, the catalase and urease ac-tivity in the arid red soil increased first and then decreased, and the phosphatase activity increased gradual y. ln rice soil, the catalase activity increased first and then decreased; the phosphatase activity decreased first and then increased; the urease activity increased first, then decreased and increased last. The activity of al the en-zymes in the 2 soils showed significant differences compared to the control except some enzymes at the vigorous growing stage. lt was suggested the planting of flue-cured tobacco would affect greatly the soil enzyme activities.展开更多
As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization sc...As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization schemes were as follows: The treatment without fertilizers(CK), the treatment with chemical fertilizers(C), the treatment with chemical fertilizers and bacterial fertilizer(CB), the treatment with organic fertilizer and chemical fertilizers(CM), and the treatment with chemical fertilizers, organic fertilizer and bacterial fertilizer(CMB). The results showed: Four fertilization treatments could improve the content of soil organic matter. CMB, CM and CB could significantly improve the soil respiration. Organic fertilizer and fertilizer could significantly improve soil enzyme activity, In different growth stages the CMB treatment had highest urease and phosphatase.The most significant in the treatment content of sucrose was CM. Organic fertilizer and microbial fertilizer can significantly improve the microbial carbon and nitrogen in soil. For the microbial biomass carbon, the CMB treatment increased by 11%-34% than CB treatment, and 35%-63% than C treatment. In terms of microbial nitrogen CMB, CM respectively increased by 31%-51% than CB treatment, and 52%-100% compared with C. In the process of land reclamation, we should combine the organic fertilizer, microbial fertilizer and inorganic fertilizer. Only in this way can soil biological activity be accelerated, soil microbial environment improved, and the ripening increased soil nutrient and soil cultivation be enhanced.展开更多
[Objective] This study aimed to investigate the impact of vanadium at dif- ferent concentration on enzyme activity and microbial biomass in soils. [Method] Us- ing pot experiments in the growth cabinet, we would like ...[Objective] This study aimed to investigate the impact of vanadium at dif- ferent concentration on enzyme activity and microbial biomass in soils. [Method] Us- ing pot experiments in the growth cabinet, we would like to investigate the changes of the soil enzyme activity and microbial biomass at different growing stages of rape (Brassica juncea L.) at different soil vanadium concentrations (soil background value was 147 mg/kg, spiked with 0, 50, 100, 150, 250 and 500 mg/kg of exogenous vanadium). [Result] Among all enzymes examined, polyphenol oxidase was most sensitive to soil vanadium. Addition of 50 mg/kg vanadium decreased its activity up to 56% of the control probably due to the vanadium toxicity. In comparison, the ac- tivities of sucrase, urease and catalase was less affected by soil vanadium. Surpris- ingly, the activity of sucrase, urease and catalase at the rape seedling stage differed significantly from at the maturity stage, highlighting the potential impact of plant growth on the vanadium-soil enzyme interaction. Different soil vanadium concentra- tions led to increases of microbial biomass to different extents. However, the corre- lation between soil microbial biomass carbon and phosphorus with vanadium con- centrations was insignificant. This revealed that the presence of additional factors (eg. plant) affected soil microbial biomass carbon and phosphorus aside from soil vanadium. [Conclusion] Polyphenol oxidase may be considered as an indicator of soil vanadium contamination. Due to the highly complicated interaction between vanadium and soil biological activities during plant growth, more investigations are required to reveal the mechanisms beyond our findings here.展开更多
All the regulations that define a maximum concentration of metals in the receiving soil are based on total soil metal concentration. However, the potential toxicity of a heavy metal in the soil depends on its speciati...All the regulations that define a maximum concentration of metals in the receiving soil are based on total soil metal concentration. However, the potential toxicity of a heavy metal in the soil depends on its speciation and availability. We studied the effects of heavy metal speciation and availability on soil microorganism activities along a Cu/Zn contamination gradient. Microbial biomass and enzyme activity of soil contaminated with both Cu and Zn were investigated. The results showed that microbial biomass was negatively affected by the elevated metal levels. The microbial biomass-C (Cmic)/organic C (Corg) ratio was closely correlated to heavy metal stress. There were negative correlations between soil microbial biomass, phosphatase activity and NH4NO3 extractable heavy metals. The soil microorganism activity could be predicted using empirical models with the availability of Cu and Zn. We observed that 72% of the variation in phosphatase activity could be explained by the NH4NO3-extractable and total heavy metal concentration. By considering different monitoring approaches and different viewpoints, this set of methods applied in this study seemed sensitive to site differences and contributed to a better understanding of the effects of heavy metals on the size and activity of microorganisms in soils. The data presented demonstrate the relationship between heavy metals availability and heavy metal toxicity to soil microorganism along a contamination gradient.展开更多
Heavy metal pollution has received increasing attention in recent years mainly because of the public awareness of environmental issues. In this study we have evaluated the effect of cadmium (Cd) on enzymes activity,...Heavy metal pollution has received increasing attention in recent years mainly because of the public awareness of environmental issues. In this study we have evaluated the effect of cadmium (Cd) on enzymes activity, substrate utilization pattern and diversity of microbial communities in soil spiked with 0, 20, 40, 60, 80, and 100 mg/kg Cd, during 60 d of incubation at 25℃. Enzyme activities determined at 0, 15, 30, 45, and 60 d after heavy metal application(DAA) showed marked declines for various Cd treatments, and up to 60 DAA, 100 mg/kg Cd resulted in 50.1%, 47.4%, and 39.8% decreases in soil urease, acid phosphatase and dehydrogenase activities, respectively to control. At 60 DAA, substrate utilization pattern of soil microbial communities determined by inoculating Biolog ECO plates indicated that Cd addition had markedly inhibited the functional activity of soil microbial communities and multivariate analysis of sole carbon source utilization showed significantly different utilization patterns for 80 and 100 mg/kg Cd treatments. The structural diversity of soil microbial communities assessed by PCR-DGGE method at 60 DAA, illustrated that DGGE patterns in soil simplified with increasing Cd concentration, and clustering of DGGE profiles for various Cd treatments revealed that they had more than 50% difference with that of control.展开更多
As one of the most sensitive regions to global climate change, alpine tundra in many places around the world has been undergoing dramatic changes in vegetation communities over the past few decades.Herbaceous plant sp...As one of the most sensitive regions to global climate change, alpine tundra in many places around the world has been undergoing dramatic changes in vegetation communities over the past few decades.Herbaceous plant species in the Changbai Mountains area have significantly expanded into tundra shrub communities over the past 30 yr.Soil microbial communities, enzyme activities, and soil nutrients are intertwined with this expansion process.In order to understand the responses of the soil microbial communities to such an expansion, we analyzed soil microbial community structures and enzyme activities in shrub tundra as well as areas with three different levels of herbaceous plant expansion.Our investigation was based on phospholipid fatty acid(PLFA) analysis and 96-well microtiter plates.The results showed that herbs have expanded greatly in the tundra, and they have become the dominant species in herbaceous plant expansion areas.There were differences for community composition and appearance among the shrub tundra and the mild expansion, moderate expansion, and severe expansion areas.Except for soil organic matter, soil nutrients were increased in herbaceous plant expansion areas, and the total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were greatest in moderate expansion areas(MOE), while soil organic matter levels were highest in the non-expanded areas(CK).The total soil PLFAs in the three levels of herbaceous plant expansion areas were significantly higher than those in the non-expanded areas, and total soil PLFAs were highest in the moderately expanded area and lowest in the severely expanded area(SEE).Bacteria increased significantly more than fungi and actinomycetes with herbaceous plant expansion.Soil hydrolase activities(β-1,4-glucosidase(βG) activity, β-1, 4-N-acetylglucosaminidase(NAG) activity, and acid phosphatase(aP) activity) were highest in MOE and lowest in the CK treatment.Soil oxidase activities(polyphenol oxidase(PPO) activities and peroxidase(PER) activities) were also highest in MOE, but they were lowest in the SEE treatment.The variations in total soil PLFAs with herbaceous plant expansion were mostly correlated with soil organic matter and available phosphorus concentrations, while soil enzyme activities were mostly correlated with the total soil nitrogen concentration.Our results suggest that herbaceous plant expansion increase the total soil PLFAs and soil enzyme activities and improved soil nutrients.However, soil microorganisms, enzyme activity, and nutrients responded differently to levels of herbaceous plant expansion.The soil conditions in mild and moderate expansion areas are more favorable than those in severe expansion areas.展开更多
Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented...Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented. In this study, we examined the impact of four planting and mulching patterns(including control, flat planting without mulching; M1, flat planting with film mulching; M2, ridge-furrow planting with film mulching on both ridges and furrows; and M3, ridge-furrow planting with film mulching on continuous ridges) on the seed yield of winter oilseed rape, soil moisture, soil temperature, soil organic carbon(SOC) content, soil nutrient content, and soil enzymatic activity over three growing seasons from 2012 to 2015 in a winter oilseed rape field in the semi-arid area of Northwest China. Seed yield of winter oilseed rape, soil moisture, soil temperature, enzymatic activities, and contents of nitrate-nitrogen, available phosphorus, and available potassium were all significantly higher in mulching treatments(M1, M2 and M3) than in control treatment over the three growing seasons, whereas SOC content was significantly lower in mulching treatments than in control treatment during 2013–2014 and 2014–2015. Among the three mulching treatments(M1, M2 and M3), the M3 treatment showed consistently higher seed yield, SOC content, nutrient contents, and enzymatic activities than the other two treatments. Seed yield of winter oilseed rape was 41.1% and 15.0% higher in M3 than in M1 and M2, respectively. SOC content and soil enzymatic activities in the top 0–20 cm soil layers and nitrate-nitrogen content in the top 0–30 cm soil layers were all significantly higher in M3 than in M1 and M2. Therefore, we advise the ridge-furrow planting with film mulching on continuous ridges(i.e., M3) as an efficient planting and mulching pattern for sustainably improving the seed yield of winter oilseed rape and preserving soil fertility in the semi-arid area of Northwest China.展开更多
The continuing increase in human activities is causing global changes such as increased deposition of atmospheric nitrogen. There is considerable interest in understanding the effects of increasing atmospheric nitroge...The continuing increase in human activities is causing global changes such as increased deposition of atmospheric nitrogen. There is considerable interest in understanding the effects of increasing atmospheric nitrogen deposition on soil enzyme activities, specifically in terms of global nitrogen cycling and its potential future contribution to global climate change. This paper summarizes the ecological effects of atmospheric nitrogen deposition on soil enzyme activities, including size-effects, stage-effects, site-effects, and the effects of different levels and forms of atmospheric nitrogen deposition. We discuss needs for further research on the relationship between atmospheric nitrogen deposition and soil enzymes.展开更多
The profile distribution of β-gulcosidase activity in twelve typical paddy soil profiles with high productivity in the Taihu Lake region of China were investigated. Activities of β-gulcosidase in the plow layers wer...The profile distribution of β-gulcosidase activity in twelve typical paddy soil profiles with high productivity in the Taihu Lake region of China were investigated. Activities of β-gulcosidase in the plow layers were in the range of 52.68- 137.02μg PNP g^-1 soil h^-1 with a mean of 89.22μg PNP g^-1 soil h^-1. However, most plow layers ranged from 70 to 110 μg PNP g^-1 soil h^-1. The profile distribution of β-gulcosidase activity in the 12 soil profiles decreased rapidly with soil depth, with activity at the 60 cm depth only about 10% of that in the surface layers (0-15 cm or 0-20 cm). In these soil profiles, β-gulcosidase activity was significantly positively correlated with soll organic carbon and arylsulphatase activity. Meanwhile, a significantly negative correlation was shown between β-gulcosidase activity and soil pH.展开更多
Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moist...Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacterial biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs. non-active bacteria were noticeable after freeze-thaw cycles.展开更多
The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in He...The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in Heilongjiang Province. The application of soil phosphorus activator was able to increase the quantity of bacteria and fungi in soil, but its effect on actinomycetes in soil was not significant. The application of microbial inoculants increased the urease and sucrase activities in soil over the growing season, but only at the maturing stage soil acid phosphatase activity was enhanced with the applying soil phosphorus activator. The application of soil phosphorus activator increased alkali-hydrolyzable nitrogen and available phosphorus contents in soil, but did not increase available potassium content in soil. The optimal microbial inoculant application rate as applied as soil phosphorus activator was 7.5 kg hm-2.展开更多
Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an o...Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN.Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass.展开更多
To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-...To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, and 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO2) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and earboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P 〈 0.5), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions.展开更多
Vertical occurrence of soil urease activity along with ammonia content from three distinct regions viz. Deep forest region (No tidal action and wave attack occurs as it is furthest from river shore and it contains max...Vertical occurrence of soil urease activity along with ammonia content from three distinct regions viz. Deep forest region (No tidal action and wave attack occurs as it is furthest from river shore and it contains maximum content of organic carbon and minimum soil salinity and silicate concentration. In this zone plenty of pneumatophores, below ground root and dense vegetation are found), Rooted region (It is situated in between Deep forest region and Un-rooted region. This region contains only pneumatophores but it is devoid of long roots and vegetations. It faces wave attack and tidal action less than that of Un-rooted region) and Un-rooted region (It is closest to river shore and faces maximum wave attack and tidal action;it contains minimum organic carbon but maximum soil salinity and silicate concentration. This zone is totally devoid of any roots, pneumatophores and vegetations) of Sundarban mangrove forest ecosystem, India revealed an interesting explanation. Soil urease activity showed a decreasing pattern with increase in depth from the deep forest region of the Sundarban forest ecosystem. Soil urease activity was found to be more sensitive to soil temperature and pH rather than soil salinity. This ensured that soil urease along with the microbes present in the Sundarban forest ecosystem are more tolerant to fluctuation in salinity than that of temperature. Soil ammonia concentration was found to be directly governed by the soil urease activity [The regression equation is Ammonia in soil = -1.64 + 0.0402 Urease Activity (R-Sq = 62.9%, P < 0.001, n = 41)].展开更多
To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was c...To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was conducted at the experimental station of Dongyang Institute of Maize Research in Zhejiang Province,China in 2009.The experiment consisted of six treatments with three replicates,and they were arranged in a completely randomized design,including no fertilization in paddy field (PCK),conventional fertilization in paddy field (PCF),formulated fertilization by soil testing in paddy field (PSTF),formulated fertilization by soil testing with organic manure in paddy field (PSTF+OF),conventional fertilization on upland (DCF),and formulated fertilization by soil testing with organic manure on upland (DSTF+OF).Soil nutrients,enzyme activity,microbial biomass and community structure were determined in 2015.The results showed that compared with no fertilization in paddy field (PCK),fertilization increased soil phosphorus and potassium content,and decreased pH value.No fertilization in paddy field (PCK) had no significant effect on soil culturable microorganisms in paddy field and upland,but formulated fertilization by soil testing with organic manure on upland (DSTF+OF) significantly increased the number of fungi.Formula fertilization by soil testing with organic manure (PSTF+OF) also significantly increased soil microbial biomass carbon and nitrogen in paddy field and upland.Moreover,fertilization had no significant effect on soil cellulase activity,but formula fertilization by soil testing with organic manure (PSTF+OF) significantly increased soil dehydrogenase and catalase activity.Therefore,long-term application of chemical fertilizer with organic fertilizer can effectively improve soil fertility.展开更多
Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0...Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0, 3, 6, 10, 20 and 40 g Cl–/SO42–salt/kg dry soil) and chloride(0, 1.5, 3, 5, 8 and 15 g Cl– salt/kg dry soil) salts on soil enzyme activities, soil physiological functional(Biolog) profiles and microbial community structure by using soil enzymatic, Biolog-Eco microplates as well as denaturing gradient gel electrophoresis(DEEG) methods, and(2) determine the threshold concentration of soil electronic conductivity(EC1:5) on maintaining the functional and structural diversity of soil microbial community. The addition of either Cl– or mixed Cl–/SO42–salt obviously increased soil EC, but adversely affected soil biological activities including soil invertase activity, soil microbial biomass carbon(MBC) and substrate-induced respiration(SIR). Cl– salt showed a greater deleterious influence than mixed Cl–/SO42–salt on soil enzymes and MBC, e.g., the higher soil MBC consistently appeared with Cl–/SO42–instead of Cl– treated soil. Meanwhile, we found that SIR was more reliable than soil basal respiration(SBR) on explaining the changes of soil biological activity responsive to salt disturbance. In addition, microbial community structures of the soil bacteria, fungi, and Bacillus were obviously affected by both salt types and soil EC levels, and its diversity increased with increasing of mixed Cl–/SO42–salt rates, and then sharply declined down after it reached critical point. Moreover, the diversity of fungal community was more sensitive to the mixed salt addition than other groups. The response of soil physiological profiles(Biolog) followed a dose-response pattern with Cl–(R2=0.83) or mixed Cl–/SO42–(R2=0.89) salt. The critical threshold concentrations of salts for soil physiological function were 0.45 d S/m for Cl– and 1.26 d S/m for Cl–/SO42–, and those for soil microbial community structural diversity were 0.70 d S/m for Cl– and 1.75 d S/m for Cl–/SO42–.展开更多
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis...The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes.展开更多
基金Supported by National Maize Industry Technology System(CARS-02-38)Science and Technology Development Project of Jilin Province(LFGC14308)Special Fund for Scientific Research in the Public Interest(201303125-03)
文摘[Objective] This study was conducted to explore the effects of deep loos- ening on soil structure and the activity of maize root system, to provide a theoreti- cal basis for the efficient and rational use of water resources. [Method] Three differ- ent loosening treatments for maize in ridges were performed in field trials as fol- lows: conventional ridge tillage, loosening the cm in spring (deep loosening in spring), and depth of 30 cm in autumn (deep loosening in soils between rows to a depth of 30 oosening the soils between rows to a autumn). Then the soil properties and the development of root system were measured to evaluate the effects of different loosening methods. [Result] Soil compactness was significantly reduced after deep loosening in spring, There were significant differences in soil compactness in 0-20 cm depth and soil bulk density in 0-40 cm depth between deep loosening in spring and deep loosening in autumn, deep loosening in spring and conventional ridge tillage. The soil water holding capacity was also significantly different between the two deep loosening treatments and conventional ridge tillage. Moreover, the root ac- tive absorption area of maize of deep loosening in spring was higher than that of conventionai ridge tillage. [Conclusion] Deep loosening can reduce soil compactness, bulk density, and improve soil water holding capacity, soil water content and the root activity of maize. Deep loosening in spring is better in soil improvement be- cause spring is closer to the growth period of crops than autumn. So, deep loosen- ing is conducive to the improvement of soil compactness and structure.
基金Supported by Key Project from National Spark Plan,China(2012GA820001)Special Project of Guizhou Provincial Science and Technology,China[Qiankehe Special Project(2011)6001)]+1 种基金"321"Efficient Planting Technique Integration and Demonstration of Vegetable from Technology Ombudsman,China[(2013)6061-1)]Guizhou Vegetable Industry Technique System Construction Program,China(GZCYTX2011-0101)~~
文摘To investigate the effects of different vegetable growing regions and planting modes on soil quality,soils in high,medium and low altitude areas of Guizhou were respectively sampled under different vegetable efficient planting modes,and the variations of soil microbial flora and enzyme activities were analyzed. The soil microbial count and total bacteria of the vegetable efficient cultivation mode were significantly higher than that of the control (traditional planting mode) in each planting area,and the microbial diversity index was also improved to varying de- grees.The soil phosphatase,catalase and urease activities of the vegetable efficient planting mode were higher than that of the control.The soil catalase and urease activities were higher than that of the control by 1.37-1.44 and 1.51-2.80 times. Application of vegetable efficient planting mode in different regions will help to im- prove the soil quality in a given period.
文摘[Objective] To provide a reference for exploring the relationship between Cd contamination and sugarcane growth and between Cd contamination and micro- bial properties of soil, the effects of adding different concentrations of exogenous cadmium (Cd) on the growth of sugarcane, the quantities of soil microorganisms and the activity of soil enzymes were studied. [Method] The plant height, stem di- ameter and cane yield of sugarcane, the soil microbial quantities and enzyme activi- ties were determined by using sugarcane as a material treated with different Cd concentrations (0, 25, 50, 100, 250 and 500 mg/kg) under potted conditions. IRe- suit] The results showed that the plant height, stem diameter and the yield of sug- arcane decreased with the increase of Cd concentration in the soil, and the higher the Cd concentration, the more obvious the inhibitory effect. The Cd contamination changed the enzyme activity, and the activities of urease and acid phosphatase sig- nificantly decreased with the increase of Cd concentration, especially when the Cd concentration reached 100 mg/kg. The sensitivity of the two soil enzymes to Cd ranked as urease〉acid phosphatase. Cd contamination also changed soil microbial quantities. Fungi, bacteria and actinomycetes significantly decreased at the Cd con- centration level of 100 mg/kg. There were significant and highly significant correla- tions between Cd contamination concentration and fungi, bacteria and actinomycetes, the activities of urease and acid phosphatase, plant height, stem diameter as well as cane yield. [Conclusion] Under the conditions of potted planted sugarcane, ex- ogenous Cd contamination affected the growth of sugarcane, the quantities of soil microorclanisms and soil enzyme activities to different degrees.
文摘The rice soil (last crop was rice) and arid red soil (last crop was corn) were used as a test material for the pot experiment. The variation of enzyme activi-ty in flue-cured tobacco-growing soil planted with different last-season crops was in-vestigated at different growth stages in this study. The results showed the activity variation of the 3 enzymes differed in the 2 soils at different growth stages. The catalase activity in the arid red soil trended to decrease overal from the vigorous growing stage to harvesting stage; while it decreased gradual y in the rice soil until the harvesting stage. The phosphatase activity in the 2 soils al increased with the proceeding of growth period. The urease activity in the arid red soil decreased gradual y at different growth stages, but the variation of urease activity in rice soil was irregular. During the growth of flue-cured tobacco, the catalase and urease ac-tivity in the arid red soil increased first and then decreased, and the phosphatase activity increased gradual y. ln rice soil, the catalase activity increased first and then decreased; the phosphatase activity decreased first and then increased; the urease activity increased first, then decreased and increased last. The activity of al the en-zymes in the 2 soils showed significant differences compared to the control except some enzymes at the vigorous growing stage. lt was suggested the planting of flue-cured tobacco would affect greatly the soil enzyme activities.
基金Supported by Natural Science Foundation of Shanxi Province(2014011001-4)~~
文摘As per randomized block design, the research had different fertilizer treatments, and the organic matter, respiration, enzyme activity and microbial carbon and nitrogen in reclaimed soil were studied. Fertilization schemes were as follows: The treatment without fertilizers(CK), the treatment with chemical fertilizers(C), the treatment with chemical fertilizers and bacterial fertilizer(CB), the treatment with organic fertilizer and chemical fertilizers(CM), and the treatment with chemical fertilizers, organic fertilizer and bacterial fertilizer(CMB). The results showed: Four fertilization treatments could improve the content of soil organic matter. CMB, CM and CB could significantly improve the soil respiration. Organic fertilizer and fertilizer could significantly improve soil enzyme activity, In different growth stages the CMB treatment had highest urease and phosphatase.The most significant in the treatment content of sucrose was CM. Organic fertilizer and microbial fertilizer can significantly improve the microbial carbon and nitrogen in soil. For the microbial biomass carbon, the CMB treatment increased by 11%-34% than CB treatment, and 35%-63% than C treatment. In terms of microbial nitrogen CMB, CM respectively increased by 31%-51% than CB treatment, and 52%-100% compared with C. In the process of land reclamation, we should combine the organic fertilizer, microbial fertilizer and inorganic fertilizer. Only in this way can soil biological activity be accelerated, soil microbial environment improved, and the ripening increased soil nutrient and soil cultivation be enhanced.
基金Supported by the National Natural Science Foundation of China(41101484)Swiss National Science Foundation PZ00P2(142232)~~
文摘[Objective] This study aimed to investigate the impact of vanadium at dif- ferent concentration on enzyme activity and microbial biomass in soils. [Method] Us- ing pot experiments in the growth cabinet, we would like to investigate the changes of the soil enzyme activity and microbial biomass at different growing stages of rape (Brassica juncea L.) at different soil vanadium concentrations (soil background value was 147 mg/kg, spiked with 0, 50, 100, 150, 250 and 500 mg/kg of exogenous vanadium). [Result] Among all enzymes examined, polyphenol oxidase was most sensitive to soil vanadium. Addition of 50 mg/kg vanadium decreased its activity up to 56% of the control probably due to the vanadium toxicity. In comparison, the ac- tivities of sucrase, urease and catalase was less affected by soil vanadium. Surpris- ingly, the activity of sucrase, urease and catalase at the rape seedling stage differed significantly from at the maturity stage, highlighting the potential impact of plant growth on the vanadium-soil enzyme interaction. Different soil vanadium concentra- tions led to increases of microbial biomass to different extents. However, the corre- lation between soil microbial biomass carbon and phosphorus with vanadium con- centrations was insignificant. This revealed that the presence of additional factors (eg. plant) affected soil microbial biomass carbon and phosphorus aside from soil vanadium. [Conclusion] Polyphenol oxidase may be considered as an indicator of soil vanadium contamination. Due to the highly complicated interaction between vanadium and soil biological activities during plant growth, more investigations are required to reveal the mechanisms beyond our findings here.
基金Project supported by the National Natural Science Foundation of Chi-na (No. 40432004, 40601086) the Natural Science Foundationof Zhejiang Province (No. Y504109).
文摘All the regulations that define a maximum concentration of metals in the receiving soil are based on total soil metal concentration. However, the potential toxicity of a heavy metal in the soil depends on its speciation and availability. We studied the effects of heavy metal speciation and availability on soil microorganism activities along a Cu/Zn contamination gradient. Microbial biomass and enzyme activity of soil contaminated with both Cu and Zn were investigated. The results showed that microbial biomass was negatively affected by the elevated metal levels. The microbial biomass-C (Cmic)/organic C (Corg) ratio was closely correlated to heavy metal stress. There were negative correlations between soil microbial biomass, phosphatase activity and NH4NO3 extractable heavy metals. The soil microorganism activity could be predicted using empirical models with the availability of Cu and Zn. We observed that 72% of the variation in phosphatase activity could be explained by the NH4NO3-extractable and total heavy metal concentration. By considering different monitoring approaches and different viewpoints, this set of methods applied in this study seemed sensitive to site differences and contributed to a better understanding of the effects of heavy metals on the size and activity of microorganisms in soils. The data presented demonstrate the relationship between heavy metals availability and heavy metal toxicity to soil microorganism along a contamination gradient.
基金The National Basic Research Programof China(2005CB121104) the National Key Project for Science and Technology of China(No.2001BA804A25andthe Natural Science Foundation of Zhejiang Province(Y504128)
文摘Heavy metal pollution has received increasing attention in recent years mainly because of the public awareness of environmental issues. In this study we have evaluated the effect of cadmium (Cd) on enzymes activity, substrate utilization pattern and diversity of microbial communities in soil spiked with 0, 20, 40, 60, 80, and 100 mg/kg Cd, during 60 d of incubation at 25℃. Enzyme activities determined at 0, 15, 30, 45, and 60 d after heavy metal application(DAA) showed marked declines for various Cd treatments, and up to 60 DAA, 100 mg/kg Cd resulted in 50.1%, 47.4%, and 39.8% decreases in soil urease, acid phosphatase and dehydrogenase activities, respectively to control. At 60 DAA, substrate utilization pattern of soil microbial communities determined by inoculating Biolog ECO plates indicated that Cd addition had markedly inhibited the functional activity of soil microbial communities and multivariate analysis of sole carbon source utilization showed significantly different utilization patterns for 80 and 100 mg/kg Cd treatments. The structural diversity of soil microbial communities assessed by PCR-DGGE method at 60 DAA, illustrated that DGGE patterns in soil simplified with increasing Cd concentration, and clustering of DGGE profiles for various Cd treatments revealed that they had more than 50% difference with that of control.
基金Under the auspices of National Natural Science Foundation of China(No.41571078,41171072)Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains,Ministry of Education
文摘As one of the most sensitive regions to global climate change, alpine tundra in many places around the world has been undergoing dramatic changes in vegetation communities over the past few decades.Herbaceous plant species in the Changbai Mountains area have significantly expanded into tundra shrub communities over the past 30 yr.Soil microbial communities, enzyme activities, and soil nutrients are intertwined with this expansion process.In order to understand the responses of the soil microbial communities to such an expansion, we analyzed soil microbial community structures and enzyme activities in shrub tundra as well as areas with three different levels of herbaceous plant expansion.Our investigation was based on phospholipid fatty acid(PLFA) analysis and 96-well microtiter plates.The results showed that herbs have expanded greatly in the tundra, and they have become the dominant species in herbaceous plant expansion areas.There were differences for community composition and appearance among the shrub tundra and the mild expansion, moderate expansion, and severe expansion areas.Except for soil organic matter, soil nutrients were increased in herbaceous plant expansion areas, and the total nitrogen(TN), total phosphorus(TP), available nitrogen(AN), and available phosphorus(AP) were greatest in moderate expansion areas(MOE), while soil organic matter levels were highest in the non-expanded areas(CK).The total soil PLFAs in the three levels of herbaceous plant expansion areas were significantly higher than those in the non-expanded areas, and total soil PLFAs were highest in the moderately expanded area and lowest in the severely expanded area(SEE).Bacteria increased significantly more than fungi and actinomycetes with herbaceous plant expansion.Soil hydrolase activities(β-1,4-glucosidase(βG) activity, β-1, 4-N-acetylglucosaminidase(NAG) activity, and acid phosphatase(aP) activity) were highest in MOE and lowest in the CK treatment.Soil oxidase activities(polyphenol oxidase(PPO) activities and peroxidase(PER) activities) were also highest in MOE, but they were lowest in the SEE treatment.The variations in total soil PLFAs with herbaceous plant expansion were mostly correlated with soil organic matter and available phosphorus concentrations, while soil enzyme activities were mostly correlated with the total soil nitrogen concentration.Our results suggest that herbaceous plant expansion increase the total soil PLFAs and soil enzyme activities and improved soil nutrients.However, soil microorganisms, enzyme activity, and nutrients responded differently to levels of herbaceous plant expansion.The soil conditions in mild and moderate expansion areas are more favorable than those in severe expansion areas.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest,China (201503125,201503105)the National High Technology Research and Development Program of China (2011AA100504)
文摘Film mulching system is a widely employed agricultural practice worldwide. However, the effects of different planting and mulching patterns on soil nutrient content and enzymatic activity have not been well documented. In this study, we examined the impact of four planting and mulching patterns(including control, flat planting without mulching; M1, flat planting with film mulching; M2, ridge-furrow planting with film mulching on both ridges and furrows; and M3, ridge-furrow planting with film mulching on continuous ridges) on the seed yield of winter oilseed rape, soil moisture, soil temperature, soil organic carbon(SOC) content, soil nutrient content, and soil enzymatic activity over three growing seasons from 2012 to 2015 in a winter oilseed rape field in the semi-arid area of Northwest China. Seed yield of winter oilseed rape, soil moisture, soil temperature, enzymatic activities, and contents of nitrate-nitrogen, available phosphorus, and available potassium were all significantly higher in mulching treatments(M1, M2 and M3) than in control treatment over the three growing seasons, whereas SOC content was significantly lower in mulching treatments than in control treatment during 2013–2014 and 2014–2015. Among the three mulching treatments(M1, M2 and M3), the M3 treatment showed consistently higher seed yield, SOC content, nutrient contents, and enzymatic activities than the other two treatments. Seed yield of winter oilseed rape was 41.1% and 15.0% higher in M3 than in M1 and M2, respectively. SOC content and soil enzymatic activities in the top 0–20 cm soil layers and nitrate-nitrogen content in the top 0–30 cm soil layers were all significantly higher in M3 than in M1 and M2. Therefore, we advise the ridge-furrow planting with film mulching on continuous ridges(i.e., M3) as an efficient planting and mulching pattern for sustainably improving the seed yield of winter oilseed rape and preserving soil fertility in the semi-arid area of Northwest China.
基金supported by the National Natural Science Foundation of China (30970556, 31170386)Research Foundation for Advanced Talents, Jiangsu University (12JDG086)
文摘The continuing increase in human activities is causing global changes such as increased deposition of atmospheric nitrogen. There is considerable interest in understanding the effects of increasing atmospheric nitrogen deposition on soil enzyme activities, specifically in terms of global nitrogen cycling and its potential future contribution to global climate change. This paper summarizes the ecological effects of atmospheric nitrogen deposition on soil enzyme activities, including size-effects, stage-effects, site-effects, and the effects of different levels and forms of atmospheric nitrogen deposition. We discuss needs for further research on the relationship between atmospheric nitrogen deposition and soil enzymes.
基金Project supported by the National Natural Science Foundation of China (No. 40371066)the National Key Basic Research Support Foundation of China (No.G1999011808).
文摘The profile distribution of β-gulcosidase activity in twelve typical paddy soil profiles with high productivity in the Taihu Lake region of China were investigated. Activities of β-gulcosidase in the plow layers were in the range of 52.68- 137.02μg PNP g^-1 soil h^-1 with a mean of 89.22μg PNP g^-1 soil h^-1. However, most plow layers ranged from 70 to 110 μg PNP g^-1 soil h^-1. The profile distribution of β-gulcosidase activity in the 12 soil profiles decreased rapidly with soil depth, with activity at the 60 cm depth only about 10% of that in the surface layers (0-15 cm or 0-20 cm). In these soil profiles, β-gulcosidase activity was significantly positively correlated with soll organic carbon and arylsulphatase activity. Meanwhile, a significantly negative correlation was shown between β-gulcosidase activity and soil pH.
文摘Seasonal development of soil microbial activity and bacterial biomass in sub-polar regions was investigated to determine the impacts of biotic and abiotic factors, such as organic matter content, temperature and moisture. The study was performed during spring thaw from three cultivated meadows and two non-cultivated forest sites near Alta, in northern Norway. Samples from all five sites showed increasing respiration rates directly after the spring thaw with soil respiration activity best related to soil organic matter content. However, distributions of bacterial biomass showed fewer similarities to these two parameters. This could be explained by variations of litter exploitation through the biomass. Microbial activity started immediately after the thaw while root growth had a longer time lag. An influence of root development on soil microbes was proposed for sites where microorganisms and roots had a tight relationship caused by a more intensive root structure. Also a reduction of microbial activity due to soil compaction in the samples from a wheel track could not be observed under laboratory conditions. New methodological approaches of differential staining for live and dead organisms were applied in order to follow changes within the microbial community. Under laboratory conditions freeze and thaw cycles showed a damaging influence on parts of the soil bacteria. Additionally, different patterns for active vs. non-active bacteria were noticeable after freeze-thaw cycles.
文摘The experiment was conducted to study the impact of application of microbial inoculants, compared with no microbial fertilizer, on enzyme activity, microbial biomass and available nutrient contents in paddy soil in Heilongjiang Province. The application of soil phosphorus activator was able to increase the quantity of bacteria and fungi in soil, but its effect on actinomycetes in soil was not significant. The application of microbial inoculants increased the urease and sucrase activities in soil over the growing season, but only at the maturing stage soil acid phosphatase activity was enhanced with the applying soil phosphorus activator. The application of soil phosphorus activator increased alkali-hydrolyzable nitrogen and available phosphorus contents in soil, but did not increase available potassium content in soil. The optimal microbial inoculant application rate as applied as soil phosphorus activator was 7.5 kg hm-2.
基金Project supported by the National Natural Science Foundation of China (No. 40231016) the National Science Foundation of America (No. DEB-00-01686).
文摘Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN.Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass.
基金Project supported by the National Key Basic Research Program (973 Program) of China (No. 2007CB106804)the PhD candidate Training Program (No. 20060730027)+1 种基金the "111" Project from the State Administration of Foreign Experts Affairs (SAFEA)the Ministry of Education of China
文摘To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, and 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO2) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and earboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P 〈 0.5), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions.
文摘Vertical occurrence of soil urease activity along with ammonia content from three distinct regions viz. Deep forest region (No tidal action and wave attack occurs as it is furthest from river shore and it contains maximum content of organic carbon and minimum soil salinity and silicate concentration. In this zone plenty of pneumatophores, below ground root and dense vegetation are found), Rooted region (It is situated in between Deep forest region and Un-rooted region. This region contains only pneumatophores but it is devoid of long roots and vegetations. It faces wave attack and tidal action less than that of Un-rooted region) and Un-rooted region (It is closest to river shore and faces maximum wave attack and tidal action;it contains minimum organic carbon but maximum soil salinity and silicate concentration. This zone is totally devoid of any roots, pneumatophores and vegetations) of Sundarban mangrove forest ecosystem, India revealed an interesting explanation. Soil urease activity showed a decreasing pattern with increase in depth from the deep forest region of the Sundarban forest ecosystem. Soil urease activity was found to be more sensitive to soil temperature and pH rather than soil salinity. This ensured that soil urease along with the microbes present in the Sundarban forest ecosystem are more tolerant to fluctuation in salinity than that of temperature. Soil ammonia concentration was found to be directly governed by the soil urease activity [The regression equation is Ammonia in soil = -1.64 + 0.0402 Urease Activity (R-Sq = 62.9%, P < 0.001, n = 41)].
基金Supported by National Modern Agricultural Industrial Technology System(CARS-02-69)Major Agriculture Science Foundation of Upland Grain Crops Breeding of Zhejiang Province(2016C02050-9-1)Project for Training of Youth Talents of Zhejiang Academy of Agricultural Sciences(2015)
文摘To investigate the effects of long-term fertilization systems on soil microbial community structure,labile organic carbon and nitrogen and enzyme activity in yellow sand paddy field and upland,a field experiment was conducted at the experimental station of Dongyang Institute of Maize Research in Zhejiang Province,China in 2009.The experiment consisted of six treatments with three replicates,and they were arranged in a completely randomized design,including no fertilization in paddy field (PCK),conventional fertilization in paddy field (PCF),formulated fertilization by soil testing in paddy field (PSTF),formulated fertilization by soil testing with organic manure in paddy field (PSTF+OF),conventional fertilization on upland (DCF),and formulated fertilization by soil testing with organic manure on upland (DSTF+OF).Soil nutrients,enzyme activity,microbial biomass and community structure were determined in 2015.The results showed that compared with no fertilization in paddy field (PCK),fertilization increased soil phosphorus and potassium content,and decreased pH value.No fertilization in paddy field (PCK) had no significant effect on soil culturable microorganisms in paddy field and upland,but formulated fertilization by soil testing with organic manure on upland (DSTF+OF) significantly increased the number of fungi.Formula fertilization by soil testing with organic manure (PSTF+OF) also significantly increased soil microbial biomass carbon and nitrogen in paddy field and upland.Moreover,fertilization had no significant effect on soil cellulase activity,but formula fertilization by soil testing with organic manure (PSTF+OF) significantly increased soil dehydrogenase and catalase activity.Therefore,long-term application of chemical fertilizer with organic fertilizer can effectively improve soil fertility.
基金supported by the National Key Technologies Research and Development Program(2016YFC0501404)the National Natural Science Foundation of China(41461064)
文摘Mixed or chloride salty ions dominate in saline soils, and exert wide-ranging adversely affect on soil biological processes and soil functions. The objectives of this study were to(1) explore the impacts of mixed(0, 3, 6, 10, 20 and 40 g Cl–/SO42–salt/kg dry soil) and chloride(0, 1.5, 3, 5, 8 and 15 g Cl– salt/kg dry soil) salts on soil enzyme activities, soil physiological functional(Biolog) profiles and microbial community structure by using soil enzymatic, Biolog-Eco microplates as well as denaturing gradient gel electrophoresis(DEEG) methods, and(2) determine the threshold concentration of soil electronic conductivity(EC1:5) on maintaining the functional and structural diversity of soil microbial community. The addition of either Cl– or mixed Cl–/SO42–salt obviously increased soil EC, but adversely affected soil biological activities including soil invertase activity, soil microbial biomass carbon(MBC) and substrate-induced respiration(SIR). Cl– salt showed a greater deleterious influence than mixed Cl–/SO42–salt on soil enzymes and MBC, e.g., the higher soil MBC consistently appeared with Cl–/SO42–instead of Cl– treated soil. Meanwhile, we found that SIR was more reliable than soil basal respiration(SBR) on explaining the changes of soil biological activity responsive to salt disturbance. In addition, microbial community structures of the soil bacteria, fungi, and Bacillus were obviously affected by both salt types and soil EC levels, and its diversity increased with increasing of mixed Cl–/SO42–salt rates, and then sharply declined down after it reached critical point. Moreover, the diversity of fungal community was more sensitive to the mixed salt addition than other groups. The response of soil physiological profiles(Biolog) followed a dose-response pattern with Cl–(R2=0.83) or mixed Cl–/SO42–(R2=0.89) salt. The critical threshold concentrations of salts for soil physiological function were 0.45 d S/m for Cl– and 1.26 d S/m for Cl–/SO42–, and those for soil microbial community structural diversity were 0.70 d S/m for Cl– and 1.75 d S/m for Cl–/SO42–.
基金National Natural Science Foundation of China (52394195)Joint research program for ecological conservation and high-quality development of the Yellow River Basin (2022-YRUC-01-0304).
文摘The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes.