期刊文献+
共找到2,222篇文章
< 1 2 112 >
每页显示 20 50 100
Diatom-induced impact on shear strength characteristics of finegrained soils
1
作者 Gang Wang Xianwei Zhang +2 位作者 Xinyu Liu Yiqing Xu Ran An 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4711-4726,共16页
Diatomaceous soils,composed of diatom microfossils with biological origins,have geotechnical properties that are fundamentally different from those of conventional non-diatomaceous fine-grained soils.Despite their hig... Diatomaceous soils,composed of diatom microfossils with biological origins,have geotechnical properties that are fundamentally different from those of conventional non-diatomaceous fine-grained soils.Despite their high fines content,diatomaceous soils typically exhibit remarkably high shear resistance,approaching that of sandy soils.However,the exact role that diatoms play in controlling the mechanical properties of fine-grained soils and the underlying mechanisms remain unclear.In light of this,the shear strength response of diatomaceous soils was systematically investigated using consolidated undrained triaxial compression tests on diatomekaolin mixtures(DKMs)with various diatom contents and overconsolidation ratios.The micro-and nano-scale structures of the soil samples were characterized in detail using scanning electron microscope(SEM)and atomic force microscope(AFM)to interpret the abnormal shear strength parameters of diatomaceous soils.The results indicated that the presence of diatoms could contribute to significantly higher strength,e.g.the friction angle of DKMs was improved by 72.7%to 37and the value of undrained shear strength tripled with diatom content increasing from 20%to 100%.Such significant improvement in soil strength with diatom inclusion could be attribute to the hard siliceous skeleton of diatoms and the interlocking between particles with rough surfaces,which were quantitatively analyzed by the surface roughness parameters with AFM.Furthermore,a conceptual model established based on the macro-mechanical tests and microscopic observations portrays a microstructural evolution of soils with increasing diatoms.The microstructure of soils was gradually transformed from the matrix-type to the skeletal one,resulting in a continual augmentation in shear strength through mutual interactions between diatom microfossils.This paper provides new insights into the multi-scale structural properties of diatoms and significantly advances our understanding of the mechanical behavior of diatomaceous soils. 展开更多
关键词 DIATOM Diatomaceous soil Fine-grained soil shear strength Microstructure Atomic force microscope(AFM)
下载PDF
Field testing of shear strength of granite residual soils
2
作者 Song Yin Pengfei Liu +3 位作者 Xianwei Zhang Wenyuan He Pan Yan Yuzhou Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3718-3732,共15页
The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of g... The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of granitic residual soils(GRS)subjected to the weathering of parent rocks have rarely been investigated.In this study,the shear strength characteristics of GRS in the Taishan area of southeast China(TSGRS)were studied by field and laboratory tests.The field tests consisted of a cone penetration test(CPT),borehole shear test(BST),self-boring pressuremeter test(SBPT),and seismic dilatometer Marchetti test(SDMT).The shortcomings of laboratory testing are obvious,with potential disturbances arising through the sampling,transportation,and preparation of soil samples.Due to the special structure of GRS samples and the ease of disturbance,the results obtained from laboratory tests were generally lower than those obtained from situ tests.The CPT and scanning electron microscopy(SEM)results indicated significant weathering and crustal hardening in the shallow TSGRS.This resulted in significant differences in the strength and strength parameters of shallow soil obtained by the BST.Based on the SDMT and SBPT results,a comprehensive evaluation method of shear strength for TSGRS was proposed.The SBPT was suitable for evaluating the strength of shallow GRS.The material index(ID)and horizontal stress index(KD)values obtained by the SDMT satisfied the empirical relationship proposed by Marchetti based on the ID index,and were therefore considered suitable for the evaluation of the shear strength of deep GRS. 展开更多
关键词 Granite residual soils shear strength Field tests Self-boring pressuremeter Seismic dilatometer Borehole shear test
下载PDF
Water retention behavior and shear strength of artificially cemented granite residual soil subjected to free drying
3
作者 Xinxin Dong Xiaohua Bao +2 位作者 Hongzhi Cui Changjie Xu Xiangsheng Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4697-4710,共14页
Artificially cemented soils have been widely used as filling materials in highway and railway construction.The shear strength evolution of filling materials upon moist variation can determine the stability of subgrade... Artificially cemented soils have been widely used as filling materials in highway and railway construction.The shear strength evolution of filling materials upon moist variation can determine the stability of subgrade and embankments.This study conducted water retention tests,MIP tests,and multi-stage triaxial shear tests on cement-treated granite residual soil(GRS)to determine its water retention curve(WRC)upon free drying,pore structure,and peak shear strength qf,respectively.The water retention behavior and shear strength evolution upon free drying were modeled based on the dual-porosity structure of cement-treated GRS and the effective stress principle,respectively.Results show that the drying-WRC is bimodal and higher cement dosage yields a more severe decrease in the water retention capacity within a specific suction range.For a given confining pressure,the peak shear strength qf increased with increasing cement dosage or suction value s.The peak shear strength qf also solely depends on the suction value in the peak stress state.In addition,the cement-treated GRS has a bimodal pore size distribution curve,and its macro-and micro-void ratios remain almost unchanged after free drying.The bimodal drying-WRC of the cement-treated GRS can be modeled by differentiating the water retention mechanisms in macro-and micro-pores.Moreover,using the macro-pore degree of saturation as the effective stress parameterχ=S_(rM),the q_(f)–p′_(f)relationship(where p′_(f)is the effective mean pressure at failure)under various suction and stress conditions can be unified,and the q_(f)–s relationships at various net confining pressuresσ_(3),net can be well reproduced.These findings can help design subgrade and embankments constructed by artificially cemented GRS and assess their safe operation upon climate change. 展开更多
关键词 Granite residual soil Cement treatment DUAL-POROSITY Water retention behavior Unsaturated shear strength
下载PDF
Determination of undrained shear strength using piezocone penetration test in clayey soil for bridge foundation 被引量:5
4
作者 童立元 王强 +2 位作者 杜广印 刘松玉 蔡国军 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期201-205,共5页
In order to obtain the reasonable undrained shear strength Su for geotechnical analyses of bridge foundations in Yangtze River floodplain clayey soils, a site-specific study is conducted using the imported piezocone p... In order to obtain the reasonable undrained shear strength Su for geotechnical analyses of bridge foundations in Yangtze River floodplain clayey soils, a site-specific study is conducted using the imported piezocone penetration test (CPTu) with dissipation phases at the Fourth Nanjing Yangtze River Bridge construction sites. Taking the values of Su from laboratory tests as references, several existing Su-predicted methods based on CPTu are compared and evaluated. To verify the presented cone factor Nk, additional test sites are selected and examined. The results show that the values of cone factors such as Nkt, Nke, and Nau, depend on the shear test mode and disturbance. Generally, the values of Nke show more scattering than those of Nkt and N△u. For the stratified and layered sediments of the Yangtze River floodplain, it is recommended using the net cone resistance qT to estimate Su and the preliminary cone factor values Nkt are from 7 to 16, with an average of 11. It is also confirmed that the CPTu test, as a new technique in site characterization, can present reasonable parameters for bridge foundations. 展开更多
关键词 undrained shear strength piezocone penetrationtest clayey soil cone factor bridge foundation
下载PDF
Influence of the roots of mixed-planting species on the shear strength of saline loess soil 被引量:11
5
作者 LIU Ya-bin HU Xia-song +2 位作者 YU Dong-mei ZHU Hai-li LI Guo-rong 《Journal of Mountain Science》 SCIE CSCD 2021年第3期806-818,共13页
In order to improve our knowledge of the mechanical effect of the roots of mixed-plantings on soil reinforcement and slope protection,the influence of roots of a mixed-planting with four herb species(Medicago sativa L... In order to improve our knowledge of the mechanical effect of the roots of mixed-plantings on soil reinforcement and slope protection,the influence of roots of a mixed-planting with four herb species(Medicago sativa L.,Elymus nutans Griseb.,Puccinellia distanx(L.),and Poa pratensis L.)and one shrub species(Caragana korshinskii Kom.)were investigated on the shear strength characteristics of saline loess soil.The root distribution characteristics were assessed via a survey when the plants grew for one year.The effects of the root biomass density,the root mass ratio(RMR)of the fine roots to the coarse roots,the moisture content,and the salt content on the shear strength index of the rooted soil were analyzed via a triaxial compression test,and the mechanism of these effects was discussed.The results indicate that the biomass density decreased linearly with increasing depth.The RMR initially decreased with depth and then increased,exhibiting in a quadratic relationship.The cohesion of the rooted soil increased linearly as the biomass density increased.The cohesion of the rooted soil initially increased with increasing RMR and salt content,and then it decreased.The turning point of the cohesion occurred when the RMR was 0.6 and the salt content was 1.18%.The internal friction angle of the rooted soil initially increased with biomass density and then decreased,and the turning point of the internal friction angle occurred when the biomass density was 0.015 g/cm3.The relationships between the internal friction angle of the rooted soil and the RMR and salt content were exponential incremental and linear subtractive relationship,respectively.Both the cohesion and the internal friction angle of the rooted soil linearly decreased with increasing moisture content. 展开更多
关键词 Xining Basin Herb species Shrub species Rooted soil Saline loess soil soil reinforcement shear strength index
下载PDF
Utilization of soil nailing technique to increase shear strength of cohesive soil and reduce settlement 被引量:3
6
作者 W.R.Azzam A.Basha 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1104-1111,共8页
This article deals with the assessment of the soil nailing technique with a vertical inclusion to improve the geotechnical parameters of cohesive soil. A series of unconfined compression tests and direct shear tests w... This article deals with the assessment of the soil nailing technique with a vertical inclusion to improve the geotechnical parameters of cohesive soil. A series of unconfined compression tests and direct shear tests were carried out to establish the stressestrain relationship and strength characteristics of the reinforced clay sample by vertical steel nails. The shear strength performance of the new composite material was tested by varying the number of vertical inclusions, the embedment depth and the alignment radius. The results confirmed that the vertical bars/inclusions shared the vertical applied load with clay. Increase in the number of vertical inclusions significantly increases the shear strength and the stiffness with a remarkable reduction in settlement. When the clay samples were reinforced with six inclusions along the perimeter, the shear strength was increased to 231% for the embedment depth ratio equal to 0.85. To obtain the optimum effect in eliminating shear failure, the vertical inclusions should be extended to a deeper zone with sufficient numbers. It has been found that the vertical inclusions significantly influence the shear strength, and the brittle or general shear failure of the unreinforced sample can be diverted to partial/plastic shear failure. 展开更多
关键词 Cohesive soil shear strength Vertical inclusion STIFFNESS SETTLEMENT
下载PDF
Shear strength of an unsaturated weakly expansive soil 被引量:3
7
作者 Weimin Ye Yawei Zhang +2 位作者 Bao Chen Xiuhan Zhou Qiang Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第2期155-161,共7页
To study the weakly expansive clay obtained from a slope along Wuhan—Shiyan expressway in Hubei Province,soil-water property tests and some unsaturated triaxial tests with suction control were conducted,and the soil-... To study the weakly expansive clay obtained from a slope along Wuhan—Shiyan expressway in Hubei Province,soil-water property tests and some unsaturated triaxial tests with suction control were conducted,and the soil-water retention curve(SWRC) and unsaturated shear strength of this soil were obtained.Results show that the air-entry suction and the residual degree of saturation of the tested soil are 106 kPa and 8%,respectively.The boundary effect zone and the transition zone can be identified on the desorption curve,but the residual zone is not so obvious.The unsaturated shear strength increases as suction increases within the range of controlled suction in the test,and friction angle,b,in the triaxial shear test is 17.6°.Based on the results,constitutive models for predicting the unsaturated shear strength using the SWRC were evaluated,and comparisons between prediction and measurement were made.It is concluded that for engineering purpose,the constitutive model should be carefully selected based on soil properties when predicting the unsaturated shear strength using the SWRC. 展开更多
关键词 unsaturated soil soil-water retention curve(SWRC) weakly expansive soil SUCTION shear strength
下载PDF
Revisiting the Bjerrum's correction factor:Use of the liquidity index for assessing the effect of soil plasticity on undrained shear strength 被引量:2
8
作者 Kamil Kayabali Ozgur Akturk +2 位作者 Mustafa Fener Orhan Dikmen Furkan Hamza Harputlugil 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期716-721,共6页
The undrained shear strength (su) of fine-grained soils that can be measured in situ and in laboratory isone of the key geotechnical parameters. The unconfined compression test (UCT) is widely used in laboratoryto... The undrained shear strength (su) of fine-grained soils that can be measured in situ and in laboratory isone of the key geotechnical parameters. The unconfined compression test (UCT) is widely used in laboratoryto measure this parameter due to its simplicity; however, it is severely affected by sampledisturbance. The vane shear test (VST) technique that is less sensitive to sample disturbance involves acorrection factor against the soil plasticity, commonly known as the Bjerrum's correction factor, m. Thisstudy aims to reevaluate the Bjerrum's correction factor in consideration of a different approach and arelatively new method of testing. Atterberg limits test, miniature VST, and reverse extrusion test (RET)were conducted on 120 remolded samples. The effect of soil plasticity on undrained shear strength wasexamined using the liquidity index instead of Bjerrum's correction factor. In comparison with the resultobatined using the Bjerrum's correction factor, the undrained shear strength was better representedwhen su values were correlated with the liquidity index. The results were validated by the RET, whichwas proven to take into account soil plasticity with a reliable degree of accuracy. This study also showsthat the RET has strong promise as a new tool for testing undrained shear strength of fine-grained soils. 展开更多
关键词 soil plasticity Undrained shear strength Bjerrum's correction factor Vane shear test(VST) Reverse extrusion test(RET)
下载PDF
Shear strength degradation of gas hydrate-bearing sediment due to partial hydrate dissociation
9
作者 Yuan Zhou Jiazuo Zhou +1 位作者 Pan Chen Changfu Wei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2749-2763,共15页
Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of po... Extraction of methane hydrate from subseafloor reservoir may potentially trigger seabed slides and induce subsidence.To address the problems,it is crucial to properly characterize the phase equilibrium condition of pore hydrate and the shear strength of the soil.As one of the key constitutive components,the phase equilibrium condition enforces a constraint over pore gas pressure,temperature and unhydrated water content.Such a constraint,however,has been traditionally ignored in analyzing the mechanical behavior of hydrate-bearing soil.In this paper,a series of stepwise hydrate dissociation tests was performed,and the phase equilibrium condition of pore hydrate was determined,providing an effective way to evaluate the unhydrated water content during hydrate dissociation.Meanwhile,a series of direct shear tests was also conducted to explore the shear strength characteristics of the soil.It is shown that the shear strength of the hydrate-bearing soil can be significantly influenced by pore gas pressure,unhydrated water content,hydrate saturation and several other factors.In particular,the measured shear strength depends upon the initial water content of the sample,pointing to a potential problem that the shear strength could be wrongly determined if not properly interpreted.A shear strength criterion,which enforces the equilibrium condition of pore hydrate,is developed for hydrate-bearing soil,establishing a link between the equilibrium condition and the shear strength.The proposed equation describes well the shear strength characteristics of hydrate-bearing soils,remarkably unifying the effects of pore pressure,temperature,water content and hydrate saturation. 展开更多
关键词 Hydrate-bearing soil Phase equilibrium condition shear strength Unhydrated water content Mechanical behavior
下载PDF
Study on the shear strength of deep reconstituted soils 被引量:4
10
作者 ZHAO Xiao-dong ZHOU Guo-qing TIAN Qiu-hong 《Mining Science and Technology》 EI CAS 2009年第3期405-408,共4页
Based on analytical methods of strength studies for deep soils, direct shear tests were carried out to investigate the shear strength of deep reconstituted soils at different initial dry densities and amounts of water... Based on analytical methods of strength studies for deep soils, direct shear tests were carried out to investigate the shear strength of deep reconstituted soils at different initial dry densities and amounts of water.The results indicate that the shear strength of deep reconstituted soils for identical amounts of water below the plastic limit is enhanced with increasing dry density and but reduced sharply at the critical density, the point at which coarse particles break down.Moreover, the shear strength for identical dry density decreases with additional amounts of water and the rate of degradation is the greatest at the critical density.This is because the friction resistance between coarse particles reduces with increasing amounts of water higher than the plastic limit.In order to obtain reliable strength of deep reconstituted soils, suitable dry densities and amounts of water are necessary. 展开更多
关键词 deep reconstituted soils shear strength dry density water content critical density
下载PDF
Novel Hybrid X GBoost Model to Forecast Soil Shear Strength Based on Some Soil Index Tests 被引量:1
11
作者 Ehsan Momeni Biao He +1 位作者 Yasin Abdi Danial Jahed Armaghani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2527-2550,共24页
When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a nove... When building geotechnical constructions like retaining walls and dams is of interest,one of the most important factors to consider is the soil’s shear strength parameters.This study makes an effort to propose a novel predictive model of shear strength.The study implements an extreme gradient boosting(XGBoost)technique coupled with a powerful optimization algorithm,the salp swarm algorithm(SSA),to predict the shear strength of various soils.To do this,a database consisting of 152 sets of data is prepared where the shear strength(τ)of the soil is considered as the model output and some soil index tests(e.g.,dry unit weight,water content,and plasticity index)are set as model inputs.Themodel is designed and tuned using both effective parameters of XGBoost and SSA,and themost accuratemodel is introduced in this study.Thepredictionperformanceof theSSA-XGBoostmodel is assessedbased on the coefficient of determination(R2)and variance account for(VAF).Overall,the obtained values of R^(2) and VAF(0.977 and 0.849)and(97.714%and 84.936%)for training and testing sets,respectively,confirm the workability of the developed model in forecasting the soil shear strength.To investigate the model generalization,the prediction performance of the model is tested for another 30 sets of data(validation data).The validation results(e.g.,R^(2) of 0.805)suggest the workability of the proposed model.Overall,findings suggest that when the shear strength of the soil cannot be determined directly,the proposed hybrid XGBoost-SSA model can be utilized to assess this parameter. 展开更多
关键词 Predictive model salp swarm algorithm soil index tests soil shear strength XGBoost
下载PDF
Shear strength features of soils developed from purple clay rock and containing less than two-millimeter rock fragments 被引量:1
12
作者 ZHONG Shou-qin ZHONG Mang +2 位作者 WEI Chao-fu ZHANG Wei-hua HU Fei-nan 《Journal of Mountain Science》 SCIE CSCD 2016年第8期1464-1480,共17页
Soil shear strength is an important indicator of engineering design and an essential parameter of soil precision tillage and agricultural machinery and equipment design. Although numerous studies have investigated the... Soil shear strength is an important indicator of engineering design and an essential parameter of soil precision tillage and agricultural machinery and equipment design. Although numerous studies have investigated the characteristics of different soil shear strengths, only a few of these works have paid attention to soils containing considerable quantities of rock fragments. To date, most studies on the effects of rock fragments on the shear strength have paid attention to the role of rock fragments with sizes 〉2 mm. The effects of rock fragments 〈2 mm in soil are generally ignored. Similar to rock fragments 〉2 ram, the presence of rock fragments 〈2 mm could also change the mechanical properties of soils. Thus, in the present study we evaluated the potential influence of 〈2 mm rock fragments on soil shear strength via an unconsolidated undrained (UU) triaxial compression test. Our results were as follows: (1) A certain quantity of 〈2 mm rock fragments presented in purple soils developed from clay rocks; and an appropriate quantity of 〈2 mm rock fragments could improve the shear strength of soils. (2) The different PSDs of soils containin 〈2 mm rock fragment mainly caused variations in the internal friction angle of soils. (3) The shear strengths of the two mudstone-developed red-brown and gray-brown purple soils was more sensitive to water than that of the shale-developed coarse-dark purple soil. As the soil water content increased from 9% to 23%, the changes in the cohesion, internal friction angle, shear strength, and the maximum principal stress difference were smaller in the coarse dark purple soil than in the two other soils. We therefore concluded that 〈2 mm rock fragments in purple soils exerted important effects on soil shear strength. A better understanding of the differences among the shear strength features of purple soils could help improve the design of agricultural machinery and equipment. 展开更多
关键词 shear strength Purple soils Rockfragments Particle size distribution (PSD) soil watercontent Triaxial test
下载PDF
Evaluation of Shear Strength and Cone Penetration Resistance Behavior of Tropical Silt Loam Soil under Uni-Axial Compression 被引量:1
13
作者 Seth I. Manuwa Omolola C. Olaiya 《Open Journal of Soil Science》 2012年第2期95-99,共5页
Laboratory investigations were conducted to study strength characteristics of silt loam soil of Ilorin, Kwara State, Nigeria, under uni-axial compression tests. The main objective of this study was to evaluate the eff... Laboratory investigations were conducted to study strength characteristics of silt loam soil of Ilorin, Kwara State, Nigeria, under uni-axial compression tests. The main objective of this study was to evaluate the effects of applied pressure and moisture content on strength indices such as bulk density, penetration resistance and shear strength of the soil and to develop relationships between the strength indices for predictive purposes necessary in soil management. The compression was carried out at different moisture contents determined according to the consistency limits of the soil. The applied pressure ranged from 75 to 600 kPa. Values of bulk density, penetration resistance and shear strength increased with increase in moisture content up to peak values after which the values decreased with further increase in moisture content. Regression models were used to describe the trends in the results for the soil. Results also showed that bulk density and soil strength normally regarded as indicators of soil quality are affected by moisture content and applied pressure and that these properties can be predicted using the models generated from the study. 展开更多
关键词 Loamy soils Applied Pressure Bulk Density Penetration RESISTANCE Moisture Content shear strength Nigeria
下载PDF
Centrifuge experiment on the penetration test for evaluating undrained strength of deep-sea surface soils 被引量:6
14
作者 Xingsen Guo Tingkai Nian +4 位作者 Wei Zhao Zhongde Gu Chunpeng Liu Xiaolei Liu Yonggang Jia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期363-373,共11页
Rapid advances in deep-sea mining engineering have created an urgent need for the accurate evaluation of the undrained strength of marine soils,especially surface soils.Significant achievements have been made using fu... Rapid advances in deep-sea mining engineering have created an urgent need for the accurate evaluation of the undrained strength of marine soils,especially surface soils.Significant achievements have been made using full-flow penetration penetrometers to evaluate marine soil strength in the deep penetration;however,a method considering the effect of ambient water on the surface penetration needs to be established urgently.In this study,penetrometers with multiple probes were developed and used to conduct centrifuge experiments on South China Sea soil and kaolin clay.First,the forces on the probes throughout the penetration process were systematically analyzed and quantified.Second,the spatial influence zone was determined by capturing the resistance changes and sample crack development,and the penetration depth for a sample to reach a stable failure mode was given.Third,the vane shear strength was used to invert the penetration resistance factor of the ball and determine the range of the penetration resistance factor values.Furthermore,a methodology to determine the penetration resistance factors for surface marine soils was established.Finally,the effect of the water cavity above various probes in the surface penetration was used to formulate an internal mechanism for variations in the penetration resistance factor. 展开更多
关键词 Static penetrometer Centrifuge experiment Deep-sea surface soil Undrained shear strength Penetration resistance factor Water cavity
下载PDF
Large-scale direct shear testing of geocell reinforced soil 被引量:3
15
作者 汪益敏 陈页开 刘炜 《Journal of Central South University of Technology》 EI 2008年第6期895-900,共6页
The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Thr... The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Three types of specimens, silty gravel soil, geocell reinforced silty gravel soil and geocell reinforced cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior, the shear strength and the strengthening mechanism of geocell reinforced soils. The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well. The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement. The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa. The tests with the reinforcement of geocell result in an increase of 244% in cohesion, and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil. The friction angle does not change markedly. The geocell reinforcement develops a large amount of cohesion on the shear strength of soils. 展开更多
关键词 direct shear test GEOCELL reinforced soil shear strength COHESION
下载PDF
Coupled Eulerian-Lagrangian simulation of a modified direct shearapparatus for the measurement of residual shear strengths 被引量:3
16
作者 Luke Tatnell Ashley P.Dyson Ali Tolooiyan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第5期1113-1123,共11页
The simulation of large-strain geotechnical laboratory tests with conventional Lagrangian finite element method(FEM)techniques is often problematic due to excessive mesh distortion.The multiple reversal direct shear(M... The simulation of large-strain geotechnical laboratory tests with conventional Lagrangian finite element method(FEM)techniques is often problematic due to excessive mesh distortion.The multiple reversal direct shear(MRDS)test can be used to measure the residual shear strength of soils in a laboratory setting.However,modelling and simulation generally require advanced numerical methods to accommodate the large shear strains concentrated in the shear plane.In reality,when the standard direct shear(DS)apparatus is used,the MRDS method is prone to two major sources of measurement error:load cap tilting and specimen loss.These sources of error make it difficult or even impossible to correctly determine the residual shear strength.This paper presents a modified DS apparatus and multi-reversal multi-stage test method,simulated using the coupled Eulerian-Lagrangian(CEL)method in a finite element environment.The method was successful in evaluating equipment and preventing both load cap tilting and specimen loss,while modelling large-deformation behaviour that is not readily simulated with the conventional FEM or arbitrary Lagrangian-Eulerian(ALE)analysis.Thereafter,a modified DS apparatus was created for the purpose of analysing mixtures of organic materials found in an Australian clay.The results obtained from the modified DS CEL model in combination with laboratory tests show a great improvement in the measured residual shear strength profiles compared to those from the standard apparatus.The modified DS setup ensures that accurate material residual shear strengths are calculated,a factor that is vital to ensure appropriate soil behaviour is simulated for numerical analyses of large-scale geotechnical projects. 展开更多
关键词 Coupled Eulerian-Lagrangian(CEL)simulation Residual shear strength MULTI-STAGE Direct shear(DS) Organic content Cohesive soil
下载PDF
Shear strength of clayey sand treated by nanoclay mixed with recycled polyester fiber 被引量:2
17
作者 Mehrdad KHOLGHIFARD Babak AMINI BEHBAHANI 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期259-269,共11页
The main objective of this study is to investigate the effects of the nanoclay mixed with recycled polyester fiber on the mechanical behavior of soil as a new stabilizer material.To meet this objective,a series of dra... The main objective of this study is to investigate the effects of the nanoclay mixed with recycled polyester fiber on the mechanical behavior of soil as a new stabilizer material.To meet this objective,a series of drained direct shear and compaction tests were performed on unreinforced and reinforced soil specimens with three different combinations of the fiber-soil ratios ranging between 0.1%and 0.5%,as well as three different combinations of nanoclay soil ratios ranging between 0.5%and 1.5%of the soil dry weight.Results indicated that composition of the nanoclay recycled polyester fiber with the soil improved the friction angle(Φ)by 41%and cohesion(c)by 174%.The soil particles stick together through viscose gel produced by nanoclay.In addition,the rough and wavy surface of the fibers creates a bond and friction between the soil particles and prevents the movement of soil particles,and as a result,the soil strength is increased. 展开更多
关键词 soil treatment NANOCLAY recycled polyester fiber shear strength clayey sand
下载PDF
Low secondary compressibility and shear strength of Shanghai Clay 被引量:1
18
作者 李青 吴宏伟 刘国彬 《Journal of Central South University》 SCIE EI CAS 2012年第8期2323-2332,共10页
In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to... In order to investigate the compressibility, particularly the secondary compression behaviour, soil structure and undrained shear strength of Shanghai Clay, a series of one-dimensional consolidation tests (some up to 70 d) and undrained triaxial tests on high-quality intact and reconstituted soil specimens were carried out. Shanghai Clay is a lightly overconsolidated soil (OCR=1.2-1.3) with true cohesion or bonding. Due to the influence of soil structures, the secondary compression index Ca varies significantly with consolidation stress and the maximum value of C~ occurs in the vicinity of preconsolidation stress. Measured coefficients of secondary compression generally fall in the range of 0.2%-0.8% based on which Shanghai Clay can be classified as a soil with low to medium secondary compressibility. The effect of soil structures on the compressibility of Shanghai Clay is found to reduce with an increase in depth. Soil structure has an important influence on initial soil stiffness, but does not appear to affect undrained shear strength significantly. Undrained shear strengths of intact Shanghai Clay from compression tests are approximately 20% higher than those from extension tests. 展开更多
关键词 Shanghai Clay block sampling secondary compressibility soil structure undrained shear strength
下载PDF
Slope Stability Analyses of Outang Landslide Based on the Peak and Residual Shear Strength Behavior
19
作者 YANG Xiuhan VANAPALLI Sai 《工程科学与技术》 EI CAS CSCD 北大核心 2019年第4期55-68,共14页
Most of the natural and compacted fine-grained soil slopes that are in saturated or unsaturated condition undergo a large deformation prior to reaching failure conditions.Such slopes should be designed taking account ... Most of the natural and compacted fine-grained soil slopes that are in saturated or unsaturated condition undergo a large deformation prior to reaching failure conditions.Such slopes should be designed taking account of their strain-softening behavior using the residual shear strength (RSS) parameters.In this paper,the slope stability of a recently reactivated Outang landslide near the Three Gorges Dam in China is analyzed based on the RSS parameters of unsaturated soils.In addition,comparisons are provided in the FOS values of slope using both the peak shear strength (PSS) and RSS parameters.Firstly,a series of site investigations of the hydrologic and geologic conditions,ground surface displacements and cracks were described.The PSS and RSS behaviors of the sliding soils derived from a series of direct shear test results performed on saturated and unsaturated soil specimens are summarized.Secondly,a series of slope stability analysis were conducted considering the precipitation and Yangtze River water level variation within a representative period of 7 months,based on the PSS and the RSS properties.In this study,three different scenarios were considered,which include: i) considering only the precipitation with a constant water level;ii) considering only the decrease in water level without rainfall;iii) considering the combination of precipitation and decrease in water level.In each scenario,four steps were included to calculate the values of factor of safety (FOS) at different times.1) A steady-state seepage analysis was conducted with a constant total head at 525 m on the left boundary and 175 m on the slope surface below the Yangtze River water level.The initial pore water pressures were simulated in the slope under no precipitation and variation of water level.2) A specific boundary condition was applied on the slope surface to model the precipitation and Yangtze River water level variation.A transient seepage analysis was conducted to calculate pore water pressures at different times based on the initial pore water pressures.3) The FOS values at different times were calculated by the Morgenstern-Price method taking account of the variation of pore water pressures at different times,using the peak shear strength (PSS) parameters.4) The last step was repeated replacing PSS parameters with RSS parameters.The RSS parameters were lower than the peak values from laboratory’s direct shear test results for the soils in the sliding zones.The reduction in shear strength from peak to residual state under unsaturated soil condition was greater than that for a saturated soil.The FOS decreased almost linearly with time for the scenario in which only the influence of rainfall infiltration was considered.However,the total reduction in the FOS was relatively small.The FOS decreased rapidly at a linear rate with respect to time with a decrease in water level for the scenario in which Yangtze River water level decrease was considered.The FOS reached to a relatively constant value after Yangtze River water level reached the lowest value.The decrease in Yangtze River water level was the dominant factor that contributed to a reduction in the FOS.The FOS was strongly dependent on the development of the phreatic line after the Yangtze River water level reached the lowest value.The FOS calculated by RSS (i.e.FOSR) is less than unity;they were approximately 16% lower in comparison to that calculated by PSS (FOSP).If PSS parameters were used,the slope would still be stable even under the combined influence of precipitation and Yangtze River water level decrease.These results are inconsistent with the field observations.For this reason,the RSS parameters should be taken into account to evaluate reliably the slope stability of the Outang landslide. 展开更多
关键词 UNSATURATED soil LANDSLIDE REACTIVATION RESIDUAL shear strength SLOPE stability analysis
下载PDF
Strength and stiffness variation of frozen soils according to confinement during freezing
20
作者 SangYeob Kim JongSub Lee 《Research in Cold and Arid Regions》 CSCD 2015年第4期335-339,共5页
When water between soil particles is frozen, the strength and stiffness behavior of soils significantly change. Thus, nu- merous experimental studies in the laboratory have been carried out to characterize the strengt... When water between soil particles is frozen, the strength and stiffness behavior of soils significantly change. Thus, nu- merous experimental studies in the laboratory have been carried out to characterize the strength and stiffness of frozen soils. The goals of this study are to evaluate the strength characteristics of frozen soils, which underwent confinement in freezing and shearing stages, and to estimate the stiffness variation by shear wave velocity during shear phase. The specimens are prepared in a brass cell by mixing sand and silt with 10% degree of saturation at a relative density of 60%. The applied normal stresses as confining stresses are 5, 10, 25 and 50 kPa. When the temperature of the specimens is lowered up to -5 ~C, direct shear tests are carried out. Furthermore, shear waves are continuously measured through bender elements during shearing stage for the investigation of stiffness change. Test results show that shear strength and stiffness are significantly affected by the confining stress in freezing and shearing phases. This study suggests that the strength and stiffness of frozen soils may be dependent on the confining stresses applied during freezing and shearing. 展开更多
关键词 frozen soil strength STIFFNESS shear CONFINEMENT
下载PDF
上一页 1 2 112 下一页 到第
使用帮助 返回顶部