Six tea plantations with different soil-forming parent materials, the same tea variety and tea age and similar landforms and management were selected to conduct a systematic study on the relationship between soil prop...Six tea plantations with different soil-forming parent materials, the same tea variety and tea age and similar landforms and management were selected to conduct a systematic study on the relationship between soil properties and tea quality. The results showed that the quality of tea grown on the soils derived from granites, arenaceous shales, argillaceous sandstones, was superior; those on the soils derived from limestones,dolomites, Quaternary red clays, were inferior. Further study showed that sandy soils were beneficial to improving amino acid content of tea, and clayey soils made it decrease; high content of bases might decrease the contents of tea polypenols, caffeine, water extracts, but promote the content of amino acids; available phosphorous was significantly positively correlated with water extracts, but significantly negatively correlated with carbine; slowly available potassium was positively correlated with amino acid content. Soil parent materials should be regarded as an important factor in evaluating the adaptability of tea to soils.展开更多
The ridge and furrow rainfall harvesting(RFRH) system is used for dryland crop production in northwest of China.To determine the effects of RFRH using different mulching materials on corn growth and water use effici...The ridge and furrow rainfall harvesting(RFRH) system is used for dryland crop production in northwest of China.To determine the effects of RFRH using different mulching materials on corn growth and water use efficiency(WUE),a field experiment was conducted during 2008-2010 at the Heyang Dryland Experimental Station,China.Four treatments were used in the study.Furrows received uncovered mulching in all RFRH treatments whereas ridges were mulched with plastic film(PF),biodegradable film(BF) or liquid film(LF).A conventional flat field without mulching was used as the control(CK).The results indicated that the average soil water storage at depths of 0-200 cm were 8.2 and 7.3%,respectively higher with PF and BF than with CK.However,LF improved soil water storage during the early growth stage of the crop.Compared with CK,the corn yields with PF and BF were increased by 20.4 and 19.4%,respectively,and WUE with each treatment increased by 23.3 and 21.7%,respectively.There were no significant differences in corn yield or WUE with the PF and BF treatments.The net income was the highest with PF,followed by BF,and the 3-yr average net incomes with these treatments were increased by 2 559 and 2 430 CNY ha-1,respectively,compared with CK.BF and PF had similar effects in enhancing the soil water content,crop yield and net income.Therefore,it can be concluded that biodegradable film may be a sustainable ecological alternative to plastic film for use in the RFRH system in northwest of China.展开更多
The boundary between subtropical zone and temperate zone is not only important in physical geography, but also attractive in agricultural production. Seven soil profiles studied in this pape...The boundary between subtropical zone and temperate zone is not only important in physical geography, but also attractive in agricultural production. Seven soil profiles studied in this paper are placed along the southern slope of Funiu Mountain at different heights above sea level. Many compositions and properties of these soils have been determined in laboratory. In this paper, the laws of migration and accumulation of soil materials on the southern slope of Funiu Mountain are discussed first, then the division of the boundary between subtropical zone and temperate zone in this area according to soil geochemistry is discussed with qualitative methods and mathematical classification method in which twelve selected indexes such as K m , Saf, Ba, β, Feo/Fet, Mno/Mnt and so on are used. The result indicates that the boundary between subtropical zone and temperate zone on the southern slope of Funiu Mountain is about 950 m above sea level.展开更多
The relationship between magnetic properties and particle size of soils derived from metamorphic rock, basalt, granite, Quaternary red clay, limestone and mudstone from Zhejiang Province, East China was studied. Based...The relationship between magnetic properties and particle size of soils derived from metamorphic rock, basalt, granite, Quaternary red clay, limestone and mudstone from Zhejiang Province, East China was studied. Based on the variations of the mass magnetic susceptibility (X), anhysteretic remanent magnetization (ARM), and saturation isothermal remanent magnetization (SIRM) with soil particle size, the relationship could be classified into three groups. For the soils derived from metamorphic rock and basalt, magnetic values were the highest in the gravel and coarse sand fractions and decreased with decreasing soil particle size. The soils derived from sedimentary rock had a bimodal distribution of magnetic values, with peaks in 1-0.5 and 0.005-0.000 5 mm fractions. The soil developed on granite was characterized by a peak of magnetic value in 0.001-0.000 5 mm fractions. Frequency-dependent susceptibility (Xfd ) and ratics of magnetic parameters (ARM/X, SIRM/X and SIRM/ARM) of soil particle fractions showed that variations in ferrimagnetic grain size paralleled those in particle size. Xfd peaked in clay fraction and decreased with increasing particle size, irrespective of soil parent materials. The acquisition curves of IRM and demagnetization parameter of different soil particles indicated that there were different magnetic minerals assemblages in different particle fractions.展开更多
Information on phosphorus(P) adsorption and its impacts on the redistribution of the P fraction in soil profiles are important for environmental management under intensive agricultural practices.To clarify the dominan...Information on phosphorus(P) adsorption and its impacts on the redistribution of the P fraction in soil profiles are important for environmental management under intensive agricultural practices.To clarify the dominant factors influencing soil phosphorus adsorption in an Entisol(locally known as purple soil), P adsorption experiments were conducted in Sichuan Basin of southwestern China for cropland and woodland soils with acidic, neutral and calcareous origins throughout their profile. After various doses of P were added during incubation experiments, soil P fractions were also analyzed. The results showed that there were no significant differences in Fe-oxides and P adsorption along the vertical gradients. Agricultural practices and lower p H conditions reduced the P adsorption capacity of purple soils throughout the soil profiles. For acidic and neutral purple soil profiles, the P adsorption capability was mainly influenced by Fe-oxides and soil texture. Ca-bound P and Fe-Al-bound P represented the majority of the total inorganic P of calcareous soils.There was a saturation of adsorption capacity by sesquioxide and a high risk of dissoluble reactive P(NH_4 Cl-P) being released out of the soil profile in acidic and neutral purple soils after the greatest P addition, indicated by the higher proportions of NH_4 Cl-P(over 40%) and decreasing Fe-Al-P fraction.P fractions migrated with greater difficulty in calcareous purple soil profiles as Ca-P fraction peaked over 65% when adding a P dose at or greater than 80 g P kg^(-1), indicating the high potential of P adsorption.The X-Ray Diffraction analysis also verified the formation of brushite. Adaptive management practices should be designed to alleviate P losses for acidic and neutral purple soils.展开更多
Based on elasto-plasticity and damage mechanics, a double-medium constitutive model of geological material under uniaxial tension and compression was presented, on the assumption that rock and soil materials are the p...Based on elasto-plasticity and damage mechanics, a double-medium constitutive model of geological material under uniaxial tension and compression was presented, on the assumption that rock and soil materials are the pore-fracture double-medium, and porous medium has no damage occurring, while fracture medium has damage occurring with load. To the implicit equation of the model, iterative method was adopted to obtain the complete stress-strain curve of the material. The result shows that many different distributions (uniform distribution, concentrated distribution and random distribution) of fractures in rock and soil material are the essential reasons of the daedal constitutive relations. By the reason that the double-medium constitutive model separates the material to be porous medium part, which is the main body of elasticity, and fracture medium part, which is the main body of damage, it is of important practical values and theoretical meanings to the study on failure of rock and soil or materials containing damage.展开更多
Eleven soil types, which can be identified and delineated using conventional soil survey procedures, were characterized for loblolly pine (Pinus taeda L.) productivity. Four 4-hectare study sites, each containing fo...Eleven soil types, which can be identified and delineated using conventional soil survey procedures, were characterized for loblolly pine (Pinus taeda L.) productivity. Four 4-hectare study sites, each containing four measurement plots, were established for every soil type studied. In a stepwise multiple regression, both soil parent material (i.e. a combination of subsoil texture and geology) (p〈0.001), and drainage class (p=0.006) were significant predictors of site index (tree age 25), and the overall linear regression model had an R2 value of 0.55. The extremes of soil parent material differed by 3.9 m site index (loamy subsoil on the Wicomico-Penholoway surfaces versus clayey subsoil on the Pamlico-Princess Anne surfaces). Each increment of drainage class differed by 0.7 m site index. For example, a poorly drained soil had 0.7 m lower site index than a somewhat poorly drained soil. For seven of the eleven soil types studied, there is greater than 80% probability that estimated mean site index is within ±0.8 m of the actual soil type mean site index. The other four soil types (labeled G, I, C and K) need to be either redefined or sampled more intensively. Two of these need to be subdivided in order to adequately characterize site quality, one based on geology (Soil type G) and one based on soil drainage class (Soil type I). Variation in soil drainage class and varying amounts of topsoil displaced into windrows were both factors influencing site quality variation of a third soil type (Soil type C). The wide variation in site index data for a fourth soil type (Soil type K) appeared to be due, in part, to sampling study locations and individual measurement plots with less than optimum bedding and/or artificial drainage. Soil parent material (subsoil texture and geology) along with drainage class were found to be important factors influencing site quality on the South Carolina Lower Coastal Plain.展开更多
The formation of the paste like backfill technology was introduced briefly in this paper. From the actual cases of coal mines, a new mode of coal mining under buildings with the technology was proposed. And its specif...The formation of the paste like backfill technology was introduced briefly in this paper. From the actual cases of coal mines, a new mode of coal mining under buildings with the technology was proposed. And its specificity was analyzed, and a further introduction to the full sand soil solidifying material was given. The main parts of the backfill system, such as the backfill preparation system, the pipeline transportation system, the backfill systems in fully mechanized mining faces and the backfill process, were presented emphatically.展开更多
The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied d...The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.展开更多
Declining yields in oil palm fresh fruit bunch (FFB) have been recorded over the past years in the coastal lowlands of southwest Cameroon and current actual yields are very low (<12 t FFB ha<sup><span styl...Declining yields in oil palm fresh fruit bunch (FFB) have been recorded over the past years in the coastal lowlands of southwest Cameroon and current actual yields are very low (<12 t FFB ha<sup><span style="white-space:nowrap;">−</span>1</sup><span style="white-space:nowrap;">•</span>yr<sup><span style="white-space:nowrap;">−</span>1</sup>) compared to the potential yields (25 t FFB ha<sup><span style="white-space:nowrap;">−</span>1</sup><span style="white-space:nowrap;">•</span>yr<sup><span style="white-space:nowrap;">−</span>1</sup>). One of the problems limiting optimum oil palm production is lack of detailed pedological information to guide plantation establishment and management. A land suitability evaluation was carried out for some major oil palm producing areas of southwest Cameroon to identify land qualities limiting optimal production. Thirteen sites (9 with sedimentary parent materials and 4 with volcanic parent material) were evaluated using a parametric method. Results indicate that climate was not a major limiting factor for oil palm production in coastal plains of southwest Cameroon. However, soil physical characteristics (mainly clayey texture and poor drainage) and soil fertility constitute limitations to oil palm production. Specifically, limitations in cation exchange capacity (CEC), base saturation (BS), organic carbon (OC) and pH were slight to moderate while K mole fraction was the most severe and the most limiting in all the sites. The fertility limitations were more pronounced in soils derived from sedimentary parent materials where 33% had limitations caused by soil pH and OC compared to none for volcanic soils. In addition, 77.8% of sedimentary soils had limitations caused by CEC compared to 25% for volcanic soils. Considering the overall suitability, soils derived from volcanic parent materials were potentially more suitable for oil palm cultivation ((S3)—50%, (S2)—50%) compared to sedimentary soils ((N)—11%, (S3)—78% and (S2)—11%). Based on the suitability classes of the different soils derived from dissimilar parent materials, appropriate site-specific soil management is needed to improve oil palm yields, especially with emphasis on K fertilization and improved soil water management. Plantation management in coastal plains of South West Cameroon therefore should factor in differences in soil parent material.展开更多
To evaluate the current state of the environmental quality of agricultural soils in Taiyuan City, a hotspot for China's industrial development, the concentrations of 8 heavy metals in soils were investigated by me...To evaluate the current state of the environmental quality of agricultural soils in Taiyuan City, a hotspot for China's industrial development, the concentrations of 8 heavy metals in soils were investigated by means of extensive sampling in farmlands, forestlands,and grasslands in the city. Statistical analyses and spatial distribution maps were used to identify the most significant heavy metal pollutants. The mean concentrations of As, Cd, Cu, Hg, Pb, Zn, Ni, and Cr were slightly higher than their background values in Taiyuan's topsoil, but were lower than the maximum permissible concentrations in the Chinese Environmental Quality Standard for agricultural soils. Farmland soils in Taiyuan had the highest average Cd, Cu, Hg, Pb, Zn, and Cr concentrations, but the As and Ni concentrations did not differ significantly among the farmland, forestland, and grasslands. Soil contamination by Cd, Cu, Hg, Pb,Zn, and Cr was mainly derived from farming practices, especially the use of sewage water for irrigation. In contrast, As and Ni might derive mainly from the soil parent material. The identification of heavy metal sources in agricultural soils may provide a basis for taking appropriate action to protect soil quality.展开更多
The 1st International Conference on the Material Point Method for "Modelling Large Deformation and Soil–Water–Structure Interaction"(MPM2017)was held in Delft,The Netherlands on 10-13 January 2017.This is the fi...The 1st International Conference on the Material Point Method for "Modelling Large Deformation and Soil–Water–Structure Interaction"(MPM2017)was held in Delft,The Netherlands on 10-13 January 2017.This is the first conference organised by the Anura3D MPM Research Community,following a series of international workshops and symposia previously held in The Netherlands,UK,Spain and Italy,as part of the European Commission FP7 Marie-Curie project MPM-DREDGE.We are delighted to present seven contributions in this Special Column of the Journal of Hydrodynamics,and take this opportunity to announce that the 2nd conference,MPM2019,will be held in Cambridge,UK in January 2019.展开更多
Loess water erosion constitutes a great threat to the safety of the West-to-East Gas Pipeline in China. Through aerial-photo interpretation and investigation of the typical region (Zichang (子长)-Yongping (水坪) ...Loess water erosion constitutes a great threat to the safety of the West-to-East Gas Pipeline in China. Through aerial-photo interpretation and investigation of the typical region (Zichang (子长)-Yongping (水坪) Section) where the loess water erosion problem is intensely developed, the influence of water erosion on the pipeline in the loess area can be manifested as the following 3 aspects: (1) surface and gully erosion causes the base overhead and pipeline exposure; (2) underground erosion forms caves, which may cause surface subsidence and foundation failure; (3) water erosion of loess may destroy the balance of slopes and cause geological hazards like landslide, collapse and debris flow. Presently, the controlling methods are mainly concrete or grouted rubble protection. These methods are not only high in cost but also have poor effect and poor durability. This article suggests a method of controlling the loess water erosion problem with soil solidified material. Then, related tests are conducted. The results of uniaxial compression, permeability, and anti-erosion ability tests indicate that the mechanical properties and anti-erosion ability of solidified loess were improved significantly.展开更多
文摘Six tea plantations with different soil-forming parent materials, the same tea variety and tea age and similar landforms and management were selected to conduct a systematic study on the relationship between soil properties and tea quality. The results showed that the quality of tea grown on the soils derived from granites, arenaceous shales, argillaceous sandstones, was superior; those on the soils derived from limestones,dolomites, Quaternary red clays, were inferior. Further study showed that sandy soils were beneficial to improving amino acid content of tea, and clayey soils made it decrease; high content of bases might decrease the contents of tea polypenols, caffeine, water extracts, but promote the content of amino acids; available phosphorous was significantly positively correlated with water extracts, but significantly negatively correlated with carbine; slowly available potassium was positively correlated with amino acid content. Soil parent materials should be regarded as an important factor in evaluating the adaptability of tea to soils.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2006BAD29B03)the 111 Project (B12007)the Shaanxi Technology Project, China (2010K02-08-2)
文摘The ridge and furrow rainfall harvesting(RFRH) system is used for dryland crop production in northwest of China.To determine the effects of RFRH using different mulching materials on corn growth and water use efficiency(WUE),a field experiment was conducted during 2008-2010 at the Heyang Dryland Experimental Station,China.Four treatments were used in the study.Furrows received uncovered mulching in all RFRH treatments whereas ridges were mulched with plastic film(PF),biodegradable film(BF) or liquid film(LF).A conventional flat field without mulching was used as the control(CK).The results indicated that the average soil water storage at depths of 0-200 cm were 8.2 and 7.3%,respectively higher with PF and BF than with CK.However,LF improved soil water storage during the early growth stage of the crop.Compared with CK,the corn yields with PF and BF were increased by 20.4 and 19.4%,respectively,and WUE with each treatment increased by 23.3 and 21.7%,respectively.There were no significant differences in corn yield or WUE with the PF and BF treatments.The net income was the highest with PF,followed by BF,and the 3-yr average net incomes with these treatments were increased by 2 559 and 2 430 CNY ha-1,respectively,compared with CK.BF and PF had similar effects in enhancing the soil water content,crop yield and net income.Therefore,it can be concluded that biodegradable film may be a sustainable ecological alternative to plastic film for use in the RFRH system in northwest of China.
基金National Natural Science Foundation of China No.49070028
文摘The boundary between subtropical zone and temperate zone is not only important in physical geography, but also attractive in agricultural production. Seven soil profiles studied in this paper are placed along the southern slope of Funiu Mountain at different heights above sea level. Many compositions and properties of these soils have been determined in laboratory. In this paper, the laws of migration and accumulation of soil materials on the southern slope of Funiu Mountain are discussed first, then the division of the boundary between subtropical zone and temperate zone in this area according to soil geochemistry is discussed with qualitative methods and mathematical classification method in which twelve selected indexes such as K m , Saf, Ba, β, Feo/Fet, Mno/Mnt and so on are used. The result indicates that the boundary between subtropical zone and temperate zone on the southern slope of Funiu Mountain is about 950 m above sea level.
基金Project (No. 49971044 and No. 49301010) supported by the National Natural Science Foundation of China.
文摘The relationship between magnetic properties and particle size of soils derived from metamorphic rock, basalt, granite, Quaternary red clay, limestone and mudstone from Zhejiang Province, East China was studied. Based on the variations of the mass magnetic susceptibility (X), anhysteretic remanent magnetization (ARM), and saturation isothermal remanent magnetization (SIRM) with soil particle size, the relationship could be classified into three groups. For the soils derived from metamorphic rock and basalt, magnetic values were the highest in the gravel and coarse sand fractions and decreased with decreasing soil particle size. The soils derived from sedimentary rock had a bimodal distribution of magnetic values, with peaks in 1-0.5 and 0.005-0.000 5 mm fractions. The soil developed on granite was characterized by a peak of magnetic value in 0.001-0.000 5 mm fractions. Frequency-dependent susceptibility (Xfd ) and ratics of magnetic parameters (ARM/X, SIRM/X and SIRM/ARM) of soil particle fractions showed that variations in ferrimagnetic grain size paralleled those in particle size. Xfd peaked in clay fraction and decreased with increasing particle size, irrespective of soil parent materials. The acquisition curves of IRM and demagnetization parameter of different soil particles indicated that there were different magnetic minerals assemblages in different particle fractions.
基金supported by National key R&D program(Grant No.2016YFD0200309-7)Natural Science Foundation of China(Grant No.41430750 and 41371241)+1 种基金West Light Foundation of Chinese Academy of Sciences(Young Scholarship A)the staff at Yanting Station for their support during the measurements
文摘Information on phosphorus(P) adsorption and its impacts on the redistribution of the P fraction in soil profiles are important for environmental management under intensive agricultural practices.To clarify the dominant factors influencing soil phosphorus adsorption in an Entisol(locally known as purple soil), P adsorption experiments were conducted in Sichuan Basin of southwestern China for cropland and woodland soils with acidic, neutral and calcareous origins throughout their profile. After various doses of P were added during incubation experiments, soil P fractions were also analyzed. The results showed that there were no significant differences in Fe-oxides and P adsorption along the vertical gradients. Agricultural practices and lower p H conditions reduced the P adsorption capacity of purple soils throughout the soil profiles. For acidic and neutral purple soil profiles, the P adsorption capability was mainly influenced by Fe-oxides and soil texture. Ca-bound P and Fe-Al-bound P represented the majority of the total inorganic P of calcareous soils.There was a saturation of adsorption capacity by sesquioxide and a high risk of dissoluble reactive P(NH_4 Cl-P) being released out of the soil profile in acidic and neutral purple soils after the greatest P addition, indicated by the higher proportions of NH_4 Cl-P(over 40%) and decreasing Fe-Al-P fraction.P fractions migrated with greater difficulty in calcareous purple soil profiles as Ca-P fraction peaked over 65% when adding a P dose at or greater than 80 g P kg^(-1), indicating the high potential of P adsorption.The X-Ray Diffraction analysis also verified the formation of brushite. Adaptive management practices should be designed to alleviate P losses for acidic and neutral purple soils.
基金Project supported by the National Natural Science Foundation of China (No.50374041)the National Key Project of the Tenth Five-Year Plan of China (No.2001BA803B0404)
文摘Based on elasto-plasticity and damage mechanics, a double-medium constitutive model of geological material under uniaxial tension and compression was presented, on the assumption that rock and soil materials are the pore-fracture double-medium, and porous medium has no damage occurring, while fracture medium has damage occurring with load. To the implicit equation of the model, iterative method was adopted to obtain the complete stress-strain curve of the material. The result shows that many different distributions (uniform distribution, concentrated distribution and random distribution) of fractures in rock and soil material are the essential reasons of the daedal constitutive relations. By the reason that the double-medium constitutive model separates the material to be porous medium part, which is the main body of elasticity, and fracture medium part, which is the main body of damage, it is of important practical values and theoretical meanings to the study on failure of rock and soil or materials containing damage.
文摘Eleven soil types, which can be identified and delineated using conventional soil survey procedures, were characterized for loblolly pine (Pinus taeda L.) productivity. Four 4-hectare study sites, each containing four measurement plots, were established for every soil type studied. In a stepwise multiple regression, both soil parent material (i.e. a combination of subsoil texture and geology) (p〈0.001), and drainage class (p=0.006) were significant predictors of site index (tree age 25), and the overall linear regression model had an R2 value of 0.55. The extremes of soil parent material differed by 3.9 m site index (loamy subsoil on the Wicomico-Penholoway surfaces versus clayey subsoil on the Pamlico-Princess Anne surfaces). Each increment of drainage class differed by 0.7 m site index. For example, a poorly drained soil had 0.7 m lower site index than a somewhat poorly drained soil. For seven of the eleven soil types studied, there is greater than 80% probability that estimated mean site index is within ±0.8 m of the actual soil type mean site index. The other four soil types (labeled G, I, C and K) need to be either redefined or sampled more intensively. Two of these need to be subdivided in order to adequately characterize site quality, one based on geology (Soil type G) and one based on soil drainage class (Soil type I). Variation in soil drainage class and varying amounts of topsoil displaced into windrows were both factors influencing site quality variation of a third soil type (Soil type C). The wide variation in site index data for a fourth soil type (Soil type K) appeared to be due, in part, to sampling study locations and individual measurement plots with less than optimum bedding and/or artificial drainage. Soil parent material (subsoil texture and geology) along with drainage class were found to be important factors influencing site quality on the South Carolina Lower Coastal Plain.
文摘The formation of the paste like backfill technology was introduced briefly in this paper. From the actual cases of coal mines, a new mode of coal mining under buildings with the technology was proposed. And its specificity was analyzed, and a further introduction to the full sand soil solidifying material was given. The main parts of the backfill system, such as the backfill preparation system, the pipeline transportation system, the backfill systems in fully mechanized mining faces and the backfill process, were presented emphatically.
基金supported by the National Key Basic Research Program of China(No.2014CB441003)the National Key Research and Development of China(No.2016YFD0200302)
文摘The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.
文摘Declining yields in oil palm fresh fruit bunch (FFB) have been recorded over the past years in the coastal lowlands of southwest Cameroon and current actual yields are very low (<12 t FFB ha<sup><span style="white-space:nowrap;">−</span>1</sup><span style="white-space:nowrap;">•</span>yr<sup><span style="white-space:nowrap;">−</span>1</sup>) compared to the potential yields (25 t FFB ha<sup><span style="white-space:nowrap;">−</span>1</sup><span style="white-space:nowrap;">•</span>yr<sup><span style="white-space:nowrap;">−</span>1</sup>). One of the problems limiting optimum oil palm production is lack of detailed pedological information to guide plantation establishment and management. A land suitability evaluation was carried out for some major oil palm producing areas of southwest Cameroon to identify land qualities limiting optimal production. Thirteen sites (9 with sedimentary parent materials and 4 with volcanic parent material) were evaluated using a parametric method. Results indicate that climate was not a major limiting factor for oil palm production in coastal plains of southwest Cameroon. However, soil physical characteristics (mainly clayey texture and poor drainage) and soil fertility constitute limitations to oil palm production. Specifically, limitations in cation exchange capacity (CEC), base saturation (BS), organic carbon (OC) and pH were slight to moderate while K mole fraction was the most severe and the most limiting in all the sites. The fertility limitations were more pronounced in soils derived from sedimentary parent materials where 33% had limitations caused by soil pH and OC compared to none for volcanic soils. In addition, 77.8% of sedimentary soils had limitations caused by CEC compared to 25% for volcanic soils. Considering the overall suitability, soils derived from volcanic parent materials were potentially more suitable for oil palm cultivation ((S3)—50%, (S2)—50%) compared to sedimentary soils ((N)—11%, (S3)—78% and (S2)—11%). Based on the suitability classes of the different soils derived from dissimilar parent materials, appropriate site-specific soil management is needed to improve oil palm yields, especially with emphasis on K fertilization and improved soil water management. Plantation management in coastal plains of South West Cameroon therefore should factor in differences in soil parent material.
基金supported by the Science & Technology Pillar Program of Shanxi Province, China (No. 20121101011)the National Natural Science Foundation of China (Nos. 41271513 and 41101013)
文摘To evaluate the current state of the environmental quality of agricultural soils in Taiyuan City, a hotspot for China's industrial development, the concentrations of 8 heavy metals in soils were investigated by means of extensive sampling in farmlands, forestlands,and grasslands in the city. Statistical analyses and spatial distribution maps were used to identify the most significant heavy metal pollutants. The mean concentrations of As, Cd, Cu, Hg, Pb, Zn, Ni, and Cr were slightly higher than their background values in Taiyuan's topsoil, but were lower than the maximum permissible concentrations in the Chinese Environmental Quality Standard for agricultural soils. Farmland soils in Taiyuan had the highest average Cd, Cu, Hg, Pb, Zn, and Cr concentrations, but the As and Ni concentrations did not differ significantly among the farmland, forestland, and grasslands. Soil contamination by Cd, Cu, Hg, Pb,Zn, and Cr was mainly derived from farming practices, especially the use of sewage water for irrigation. In contrast, As and Ni might derive mainly from the soil parent material. The identification of heavy metal sources in agricultural soils may provide a basis for taking appropriate action to protect soil quality.
基金support provided by the European Union Seventh Framework Program(FP7/2007-2013)under grant agreement No.PIAG-GA-2012-324522“MPM-DREDGE”
文摘The 1st International Conference on the Material Point Method for "Modelling Large Deformation and Soil–Water–Structure Interaction"(MPM2017)was held in Delft,The Netherlands on 10-13 January 2017.This is the first conference organised by the Anura3D MPM Research Community,following a series of international workshops and symposia previously held in The Netherlands,UK,Spain and Italy,as part of the European Commission FP7 Marie-Curie project MPM-DREDGE.We are delighted to present seven contributions in this Special Column of the Journal of Hydrodynamics,and take this opportunity to announce that the 2nd conference,MPM2019,will be held in Cambridge,UK in January 2019.
基金supported by the National Natural Science Foundation of China (No. 40972185)
文摘Loess water erosion constitutes a great threat to the safety of the West-to-East Gas Pipeline in China. Through aerial-photo interpretation and investigation of the typical region (Zichang (子长)-Yongping (水坪) Section) where the loess water erosion problem is intensely developed, the influence of water erosion on the pipeline in the loess area can be manifested as the following 3 aspects: (1) surface and gully erosion causes the base overhead and pipeline exposure; (2) underground erosion forms caves, which may cause surface subsidence and foundation failure; (3) water erosion of loess may destroy the balance of slopes and cause geological hazards like landslide, collapse and debris flow. Presently, the controlling methods are mainly concrete or grouted rubble protection. These methods are not only high in cost but also have poor effect and poor durability. This article suggests a method of controlling the loess water erosion problem with soil solidified material. Then, related tests are conducted. The results of uniaxial compression, permeability, and anti-erosion ability tests indicate that the mechanical properties and anti-erosion ability of solidified loess were improved significantly.