Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established man...Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit.展开更多
The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a g...The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a good indicator of soil water status around roots and the relation between xylem ABA concentration and predawn leaf water potential remained constant during the three consecutive soil drying cycles based on the slopes of the fitted lines. The sensitivity of stomata to xylem ABA increased substantially as the soil drying cycles progressed, and the xylem ABA concentration needed to cause a 50% decrease of stomatal conductance was as low as 550 nmol/L in the next two soil drying cycle, as compared with the 750 nmol/L ABA in the first cycle of soil drying. The results using the split_root system showed that leaf water deficit significantly enhanced the stomatal response to xylem ABA and the xylem ABA concentration needed to cause a 50% decrease in stomatal conductance was 2 to 4 times smaller in the whole_root_drying treatment than those in the semi_root_drying treatment. These results suggested that the sensitivity of stomata to xylem ABA concentration is not a fixed characteristic.展开更多
Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbaniz...Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbanized slope regions, especially those considered high-risk areas. Various other factors contribute to the process;thus, it is essential to analyze the causes of such incidents in all possible ways. Soil moisture plays a critical role in the Earth’s surface-atmosphere interaction systems;hence, measurements and their estimations are crucial for understanding all processes involved in the water balance, especially those related to landslides. Soil moisture can be estimated from in-situ measurements using different sensors and techniques, satellite remote sensing, hydrological modeling, and indicators to index moisture conditions. Antecedent soil moisture can significantly impact runoff for the same rainfall event in a watershed. The Antecedent Precipitation Index (API) or “retained rainfall,” along with the antecedent moisture condition from the Natural Resources Conservation Service, is generally applied to estimate runoff in watersheds where data is limited or unavailable. This work aims to explore API in estimating soil moisture and establish thresholds based on landslide occurrences. The estimated soil moisture will be compared and calibrated using measurements obtained through multisensor capacitance probes installed in a high-risk area located in the mountainous region of Campos do Jordão municipality, São Paulo, Brazil. The API used in the calculation has been modified, where the recession coefficient depends on air temperature variability as well as the climatological mean temperature, which can be considered as losses in the water balance due to evapotranspiration. Once the API is calibrated, it will be used to extrapolate to the entire watershed and consequently estimate soil moisture. By utilizing recorded mass movements and comparing them with API and soil moisture, it will be possible to determine thresholds, thus enabling anticipation of landslide occurrences.展开更多
A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil wa...A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate.展开更多
We carried out a pool culture experiment to determine the optimal water treatment depth in loam and clay soils during the late growth stage of super rice. Three controlled water depth treatments of 0-5, 0-10 and 0-15 ...We carried out a pool culture experiment to determine the optimal water treatment depth in loam and clay soils during the late growth stage of super rice. Three controlled water depth treatments of 0-5, 0-10 and 0-15 cm below the soil surface were established using alternate wetting and drying irrigation, and the soil water potential (0 to -25 kPa) was measured at 5, 10 and 15 cm. A 2-cm water layer was used as the control. We measured soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and rice yield. The results showed that the 0-5-cm water depth treatment significantly increased root antioxidant enzyme activities in loam soil compared with the control, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield did not differ from those of the control. The 0-10- and 0-15-cm water depth treatments also increased root antioxidant enzyme activities, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield decreased. In clay soil, the soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and yield did not change with the 0-5-cm water treatment, whereas the 0-10- and 0-15-cm water treatments improved these parameters. Therefore,the appropriate depths for soil water during the late growth period of rice with a 0 to -25 kPa water potential were 5 cm in loam and 15 cm in clay soil.展开更多
Soil salinity is the most important factor affecting vegetation distribution,and the secondary salinization has affected the development of oasis agriculture.In arid areas the spatial variation of soil moisture and sa...Soil salinity is the most important factor affecting vegetation distribution,and the secondary salinization has affected the development of oasis agriculture.In arid areas the spatial variation of soil moisture and sa lt content is marked-ly affected by groundwater,irratio nal irrigation in artificial oasis.By analyzing the soil moisture,salt content and groundwa-ter table in different areas of old oasis,new oasis and desert in Fukang Oa sis,it is shown that topography and l and use are main factors affecting the change of groundwater table,the redistribution of soil moisture and salt cont ent.When undis-turbed by human,the groundwater tab le rises from mountain to belt of grou nd water spillage,the groundwater t able rises mightily in plain because of the artificial irrigation,and the secondary salinization of soil is very seriou s.In oasis the ground-water table raises compared with that in the natural desert at the same latitude.In old oasis of upper reaches o f river salt has not been concentrated too much in rhizosphere because this area is the belt of groundwater drainage,soil t exture is coarse,the groundwater table is very low,and the salt in soil is drained i nto the groundwater.The new oasis has been the areas of salt accumulation becau se of the artificial irrigation,the salt content in soil is higher than th at in old oasis,so some cultivated fields here had to be thrown out because of the serious s econdary salinization.展开更多
The dynamics of sap flow in relation to plant morphology and weather conditions during reproductive growth of soybean (Glycine max. L. Merr.) influence decisions pertaining to efficient irrigation management and other...The dynamics of sap flow in relation to plant morphology and weather conditions during reproductive growth of soybean (Glycine max. L. Merr.) influence decisions pertaining to efficient irrigation management and other inputs for high yields. Field studies began in 2017 at Marianna, Arkansas to measure moisture dynamics of soybeans during seed fill (R5 to R7) using heat balance stem flow gauges. Sap flow was highly correlated to solar radiation with maximum rates observed during beginning seed fill (R5). A solar radiation efficiency (SRE) value, calculated as hourly sap flow rate per Watt-hour of solar radiation (g/Wh2), is proposed. The SRE relates to crop water demand and hydraulic resistance of the soil-root-stem-leaf-pod-seed pathway. SRE values ranged from 0 - 1.2 g/Wh2. Soil moisture, growth stage, time of day, and weather conditions influenced the SRE, with higher values observed in the morning, late afternoon, and during R5 growth. Peak sap flows of 39 g/h at R5, 25 g/h at R6, and 3 g/h at R7 occurred. The ratio of measured sap flow to estimated crop evapotranspiration was 0.9 to 1.3 during R5 to R6.9 (maximum dry matter), but dropped to 0.2 at R7. Further research is needed to better understand late season reproductive moisture dynamics in soybeans.展开更多
Arid and semi-arid regions are characterized by low rainfall and high potential evaporative demand. Here, water is the major limiting factor for plant growth and productivity. Soil and surface hydrology properties (e...Arid and semi-arid regions are characterized by low rainfall and high potential evaporative demand. Here, water is the major limiting factor for plant growth and productivity. Soil and surface hydrology properties (e.g. field capacity, infikration rates) effectively control the water re-distribution in the ecosystem, a fact that is aggravated in arid environments. Information of the spatial and temporal accessibility of soil water in desert ecosystems is limited. The purpose of the studies is the application of plant water potential to estimate the spatial and temporal variations of soil water availability in different arid ecosystems of the Negev (Israel) and southern Morocco. As model plants the evergreen shrubs Retama raetam, Thymelaea hirsuta and trees (Acacia tortilis) were chosen. Seasonal and spatial variations of the pre-dawn water potential (ψpd) were examined as diagnostic tool to determine water availability on the landscape level. The seasonal differences in the pre-dawn water potential were less pronounced on the dune compared to the interdune. This showed a better water availability on the dune slope. Also in the investigated wadis systems spatial differences of the water potential could be detected and related to the vegetation pattern.展开更多
Soil moisture availability to plant roots is very important for crop growth. When soil moisture is not available in the root zone, plants wilt and yield is reduced. Adequate knowledge of the distribution of soil moist...Soil moisture availability to plant roots is very important for crop growth. When soil moisture is not available in the root zone, plants wilt and yield is reduced. Adequate knowledge of the distribution of soil moisture within crop’s root zone and its linkage to the amount of water applied is very important as it assists in optimising the efficient use of water and reducing yield losses. The study aimed at evaluating the spatial redistribution of soil moisture within maize roots zone under different irrigation water application regimes. The study was conducted during two irrigatation seasons of 2012 at Nkango Irrigation Scheme, Malawi. The trials consisted of factorial arrangement in a Randomised Complete Block Design (RCBD). The factors were water and nitrogen and both were at four levels. The Triscan Sensor was used to measure volumetric soil moisture contents at different vertical and lateral points. The study inferred that the degree of soil moisture loss depends on the amount of water present in the soil. The rate of soil moisture loss in 100% of full water requirement regime (100% FWRR) treatment was higher than that in 40% FWRR treatment. This was particularly noticed when maize leaves were dry. In 100% FWRR treatment, the attraction between water and the surfaces of soil particles was not tight and as such “free” water was lost through evaporation and deep percolation, while in 40% FWRR, water was strongly attracted to and held on the soil particles surfaces and as such its potential of losing water was reduced.展开更多
Knowledge of the soil water characteristic curve is fundamental for understanding unsaturated soils.The objective of this work was to find scanning hysteresis loops of two fine textured soils at water potentials below...Knowledge of the soil water characteristic curve is fundamental for understanding unsaturated soils.The objective of this work was to find scanning hysteresis loops of two fine textured soils at water potentials below wilting point.This was done by equilibration over NaCl solutions with water potentials of-6.6 to-18.8 MPa at 25℃.When cycled repeatedly through a series of potentials in the range noted previously both soils exhibited a hysteresis effect.The experimental differences in water content between the drying and wetting soils at the same water potential were much too large to be accounted for by failure to allow sufficient time to attain equilibrium as predicted by the exponential decay model.The wetting versus drying differences were relatively small,however,at only 4 mg g-1 or less in absolute terms and about 3% of the mean of wetting and drying,in relative terms.Hysteresis should be a consideration when modeling biological and physical soil processes at water contents below the wilting point,where small differences in water content result in large potential energy changes.展开更多
Soybean (Glycine max (L.) Merrill) is one of the most important oil and protein sources in the world. Interactive effect of elevated carbon dioxide (CO2) and soil water availability potentially impact future food secu...Soybean (Glycine max (L.) Merrill) is one of the most important oil and protein sources in the world. Interactive effect of elevated carbon dioxide (CO2) and soil water availability potentially impact future food security of the world under climate change. A rhizotron growth chamber experiment was conducted to study soil moisture interactions with elevated CO2 on gaseous exchange parameters of soybean under two CO2 concentrations (380 and 800 μmol·mol-1) with three soil moisture levels. Elevated CO2 decreased photosynthetic rate (11.1% and 10.8%), stomatal conductance (40.5% and 36.0%), intercellular CO2 concentration (16.68% and 12.28%), relative intercellular CO2 concentration (17.4% and 11.2%), and transpiration rate (43.6% and 39%) at 42 and 47 DAP. This down-regulation of photosynthesis was probably caused by low leaf nitrogen content and decrease in uptake of nutrients due to decrease in stomatal conductance and transpiration rate. Water use efficiency (WUE) increased under elevated CO2 because increase in total dry weight of plant was greater than that of water use under high CO2 conditions. Plants under normal and high soil moisture levels had significantly higher photosynthetic rate (7% to 16%) favored by optimum soil moisture content and high specific water content of soybean plants. Total dry matter production was significantly high when plants grown under elevated CO2 with normal (74.3% to 137.3%) soil moisture level. Photosynthetic rate was significantly and positively correlated with leaf conductance and intercellular CO2 concentration but WUE was significantly negatively correlated with leaf conductance, intercellular CO2 concentration and transpiration rate. However, the effect of high CO2 on plants depends on availability of nutrients and soil moisture for positive feedback from CO2 enrichment.展开更多
[Objectives]The paper was to explore the effects of different mulching methods on soil moisture content and water movement in citrus orchards,and to provide the theoretical basis for improving water and weed managemen...[Objectives]The paper was to explore the effects of different mulching methods on soil moisture content and water movement in citrus orchards,and to provide the theoretical basis for improving water and weed management level in orchards.[Methods]Three ground mulching treatments including spraying herbicide(CK),grass-proof cloth cover(GPC)and natural grass mowing(NGM)were set up to analyze the soil moisture content and water flux characteristics of soil profile in the soil layers of 5,20,40 and 60 cm under different mulching methods.[Results]The GPC and NGM treatments significantly increased the soil moisture content in the soil layer of 0-60 cm at the young fruit stage and fruit expansion stage,which inhibited soil water evaporation and effectively improved soil water holding capacity,thus reducing irrigation water consumption and saving water resources.During the expansion stage of citrus fruits,the soil water flux in the soil layer of 0-60 cm in NGM and CK treatments was upward,and the upward soil water flux in NGM treatment was larger,which could mobilize more upward movement of deep soil moisture for uptake by citrus roots.However,the soil water flux in the soil layer of 0-60 cm in GPC treatment was downward,and the soil moisture conditions in the upper and middle layers were already sufficient for citrus growth.[Conclusions]Both GPC and NGM treatments can increase the overall soil moisture content.In the dry season,the soil moisture content in the upper layer treated by GPC is always relatively high,while more soil water in the lower layer move to the upper layer in NGM treatment,which has met the water requirements for citrus growth.展开更多
Aiming at the limitation of traditional measuring soil water potential, the paper presents an information system based GSM to real-time monitor data coming from multiple data sources. The monitoring system, which cons...Aiming at the limitation of traditional measuring soil water potential, the paper presents an information system based GSM to real-time monitor data coming from multiple data sources. The monitoring system, which consisted of monitoring center, GSM transmission channel and data detection terminal, was given. The detection terminal included the measuring station and TS-2 negative pressure meter, which was applied to measure soil water potential. Nowadays the system has been successfully applied to drip irrigation in the cotton field on farm in Xinjiang region. The system provides a feasible technology frame-work for collecting and processing wide geographical distribution data in farmland.展开更多
On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were pu...On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.展开更多
[Objective] The aim was to provide theoretical basis for field moisture conserving irrigation.[Method] With Xiaoyan No.6 as tested material,three different kinds of mulching irrigation treatments were carried out (st...[Objective] The aim was to provide theoretical basis for field moisture conserving irrigation.[Method] With Xiaoyan No.6 as tested material,three different kinds of mulching irrigation treatments were carried out (straw mulching;plastic mulching;PAM control adjustment mulching).With non-mulching treatment as control,moisture conserving effect of different treatments were compared.[Result] The results showed that the water consumption of winter wheat under different soil moisture conservation treatments was low at earlier stage and later stage,but high at mid-stage,which was consistent with the water consumption law of control.There were some differences in terms of consumption intensity because of irrigation schedule and growth condition;soil moisture conservation treatments could restrain ineffective evaporation of soil moisture before anthesis.We also found that the variation of soil moisture at depth of 0-20 cm in PAM and control treatment was dramatic.The soil moisture of the former was lower than the latter at the depth of 0-20 cm,but higher at the depth of 20-50 cm.The difference of soil moisture at the depth of 0-50 cm was significant.[Conclusion] Plastic mulching and straw mulching could restrain evaporation effectively.展开更多
In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecologi...In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecological aforestation in gully head and slope were selected to compare their effects on soil and water conservation.Soil and water loss,soil infiltration rate and the soil moisture dynamics of soil profile with the depth of 0-100 cm of these three patterns and their controls were observed by established standard observation plots in rainy season.The results showed that the soil and water loss of ecological afforestation and production forest terrace reduced by over 30% and 60% compared with their controls(without growth of any vegetation)respectively,showing significant control effect on the soil and water loss.Vegetation restoration also apparently increased the infiltration rate of soil(increased by 100%-200%).In rainy season,the soil moisture content of ecological afforestation and production forest terrace increased by over 30% and 100% compared with their controls.This indicated that vegetation restoration will not lead to soil aridity during the rainy season;vegetation restoration not only reduced the loss of surface water and soil fine particles,but also enhanced the infiltration of precipitation.These two effects made the soil moisture content increase throughout the profile.展开更多
The soil water index (SWI) from satellite remote sensing and the observational soil moisture from agricultural meteorological stations in eastern China are used to retrieve soil moisture. The analysis of correlation...The soil water index (SWI) from satellite remote sensing and the observational soil moisture from agricultural meteorological stations in eastern China are used to retrieve soil moisture. The analysis of correlation coefficient (CORR), root-mean-square-error (RMSE) and bias (BIAS) shows that the retrieved soil moisture is convincible and close to the observation. The method can overcome the difficulties in soil moisture observation on a large scale and the retrieved soil moisture may reflect the distribution of the real soil moisture objectively. The retrieved soil moisture is used as an initial scheme to replace initial conditions of soil moisture (NCEP) in the model MM5V3 to simulate the heavy rainfall in 1998. Three heavy rainfall processes during 13-14 June, 18-22 June, and 21-26 July 1998 in the Yangtze River valley are analyzed. The first two processes show that the intensity and location of simulated precipitation from SWI are better than those from NCEP and closer to the observed values. The simulated heavy rainfall for 21-26 July shows that the update of soil moisture initial conditions can improve the model's performance. The relationship between soil moisture and rainfall may explain that the stronger rainfall intensity for SWI in the Yangtze River valley is the result of the greater simulated soil moisture from SWI prior to the heavy rainfall date than that from NCEP, and leads to the decline of temperature in the corresponding area in the heavy rainfall days. Detailed analysis of the heavy rainfall on 13-14 June shows that both land-atmosphere interactions and atmospheric circulation were responsible for the heavy ralnfall, and it shows how the SWI simulation improves the simulation. The development of mesoscale systems plays an important role in the simulation regarding the change of initial soil moisture for SWI.展开更多
Soil moisture affects various hydrological processes, including evapotranspiration, infiltration, and runoff. Forested areas in the lower western Himalaya in India constitute the headwater catchments for many hill str...Soil moisture affects various hydrological processes, including evapotranspiration, infiltration, and runoff. Forested areas in the lower western Himalaya in India constitute the headwater catchments for many hill streams and have experienced degradation in forest cover due to grazing, deforestation and other human activities. This change in forest cover is likely to alter the soil moisture regime and, consequently, flow regimes in streams. The effect of change in forest cover on soil moisture regimes of this dry region has not been studied through long term field observations. We monitored soil matric potentials in two small watersheds in the lower western Himalaya of India. The watersheds consisted of homogeneous land covers of moderately dense oak forest and moderately degraded mixed oak forest. Observations were recorded at three sites at three depths in each watershed at fortnightly intervals for a period of three years. The soil moisture contents derived from soil potential measurements were analyzed to understand the spatial, temporal and profile variations under the two structures of forest cover. The analysis revealed large variations in soil moisture storage at different sites and depths and also during different seasons in each watershed. Mean soil moisture storage during monsoon, winter and summer seasons was higher under dense forest than under degraded forest. Highest soil moisture content occurred at shallow soil profiles, decreasing with depth in both watersheds. A high positive correlation was found between tree density and soil moisture content. Mean soil moisture content over the entire study period was higher under dense forest than under degraded forest. This indicated a potential for soil water storage under well managed oak forest. Because soil water storage is vital for sustenance of low flows, attention is needed on the management of oak forests in the Himalayan region.展开更多
A study was conducted to determine the fitting soil moisture for the normal growth of two-year-old W. sinensis (Sims) Sweets by using gas exchange technique. Remarkable threshold values of net photosynthetic rate ...A study was conducted to determine the fitting soil moisture for the normal growth of two-year-old W. sinensis (Sims) Sweets by using gas exchange technique. Remarkable threshold values of net photosynthetic rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) were observed in the W. sinensis leaves treated by various soil moisture and photosynthetic available radiation (PAR). The fitting soil moisture for maintaining a high level of Pn and WUE was in range of 15.3%-26.5% of volumetric water content (VWC), of which the optimal VWC was 23.3%. Under the condition of fitting soil moisture, the light saturation point of leaves occurred at above 800μmol.m^2.s^-1, whereas under the condition of water deficiency (VWC, 11.9% and 8.2%) or oversaturation (VWC, 26.5%), the light saturation point was below 400μmol.m^-1.s^-1. Moreover, the light response curves suggested that a special point of PAR occurred with the increase in PAR. This special point was considered as the turning point that indicated the functional transition from stomatal limitation to non-stomatal limitation. The turning point was about 600, 1000, 1000 and 400 μmol.m^-2.s^-1, respectively, at VWC of 28.4%, 15.3%, 11.9% and 8.2%. In conclusion, W. sinensis had higher adaptive ability to water stress by regulating itself physiological function.展开更多
In arid regions, water vapor diffusion predominates the total water migration in unsaturated soil, which significantly influences agriculture and engineering applications. With the aim of revealing the diffusion mecha...In arid regions, water vapor diffusion predominates the total water migration in unsaturated soil, which significantly influences agriculture and engineering applications. With the aim of revealing the diffusion mechanism of water vapor in unsaturated soil, a water vapor migration test device was developed to conduct the water vapor migration indoor test. The test results demonstrate that the characteristics of water vapor diffusion in unsaturated soil conformed to Fick’s second law. A mathematical model for water vapor diffusion under isothermal conditions in unsaturated soil was established based on Fick’s law. Factors including the initial moisture content gradient, initial moisture content distribution, soil type and temperature that affect the water vapor diffusion coefficient were analyzed. The results show that there was good agreement between the moisture content calculated by the mathematical model and obtained by the indoor experiment. The vapor diffusion coefficient increased with increasing initial moisture content gradient and temperature. When the initial moisture content gradient is constant, the vapor diffusion coefficient increases with the increase of matrix suction ratio in dry and wet soil section. The effect of soil type on the water vapor diffusion coefficient was complex, as both the moisture content and soil particle sizes affected the water vapor diffusion.展开更多
基金supported by the projects of China Agriculture Research System of MOF and MARA (Grant No.CARS-29-ZP-7)Outstanding Youth Science and Technology Fund of Henan Academy of Agricultural Sciences (Grant No.2022YQ08)。
文摘Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit.
文摘The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a good indicator of soil water status around roots and the relation between xylem ABA concentration and predawn leaf water potential remained constant during the three consecutive soil drying cycles based on the slopes of the fitted lines. The sensitivity of stomata to xylem ABA increased substantially as the soil drying cycles progressed, and the xylem ABA concentration needed to cause a 50% decrease of stomatal conductance was as low as 550 nmol/L in the next two soil drying cycle, as compared with the 750 nmol/L ABA in the first cycle of soil drying. The results using the split_root system showed that leaf water deficit significantly enhanced the stomatal response to xylem ABA and the xylem ABA concentration needed to cause a 50% decrease in stomatal conductance was 2 to 4 times smaller in the whole_root_drying treatment than those in the semi_root_drying treatment. These results suggested that the sensitivity of stomata to xylem ABA concentration is not a fixed characteristic.
文摘Landslides are highly dangerous phenomena that occur in different parts of the world and pose significant threats to human populations. Intense rainfall events are the main triggering process for landslides in urbanized slope regions, especially those considered high-risk areas. Various other factors contribute to the process;thus, it is essential to analyze the causes of such incidents in all possible ways. Soil moisture plays a critical role in the Earth’s surface-atmosphere interaction systems;hence, measurements and their estimations are crucial for understanding all processes involved in the water balance, especially those related to landslides. Soil moisture can be estimated from in-situ measurements using different sensors and techniques, satellite remote sensing, hydrological modeling, and indicators to index moisture conditions. Antecedent soil moisture can significantly impact runoff for the same rainfall event in a watershed. The Antecedent Precipitation Index (API) or “retained rainfall,” along with the antecedent moisture condition from the Natural Resources Conservation Service, is generally applied to estimate runoff in watersheds where data is limited or unavailable. This work aims to explore API in estimating soil moisture and establish thresholds based on landslide occurrences. The estimated soil moisture will be compared and calibrated using measurements obtained through multisensor capacitance probes installed in a high-risk area located in the mountainous region of Campos do Jordão municipality, São Paulo, Brazil. The API used in the calculation has been modified, where the recession coefficient depends on air temperature variability as well as the climatological mean temperature, which can be considered as losses in the water balance due to evapotranspiration. Once the API is calibrated, it will be used to extrapolate to the entire watershed and consequently estimate soil moisture. By utilizing recorded mass movements and comparing them with API and soil moisture, it will be possible to determine thresholds, thus enabling anticipation of landslide occurrences.
文摘A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate.
基金supported by the National Natural Science Foundation of China(31271651)the Major Science and Technology Project of Henan Province,China(141100110600)+1 种基金the Special Fund for Agro-scientific Research in the Public Interest of China(201303102)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province,China(94200510003)
文摘We carried out a pool culture experiment to determine the optimal water treatment depth in loam and clay soils during the late growth stage of super rice. Three controlled water depth treatments of 0-5, 0-10 and 0-15 cm below the soil surface were established using alternate wetting and drying irrigation, and the soil water potential (0 to -25 kPa) was measured at 5, 10 and 15 cm. A 2-cm water layer was used as the control. We measured soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and rice yield. The results showed that the 0-5-cm water depth treatment significantly increased root antioxidant enzyme activities in loam soil compared with the control, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield did not differ from those of the control. The 0-10- and 0-15-cm water depth treatments also increased root antioxidant enzyme activities, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield decreased. In clay soil, the soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and yield did not change with the 0-5-cm water treatment, whereas the 0-10- and 0-15-cm water treatments improved these parameters. Therefore,the appropriate depths for soil water during the late growth period of rice with a 0 to -25 kPa water potential were 5 cm in loam and 15 cm in clay soil.
文摘Soil salinity is the most important factor affecting vegetation distribution,and the secondary salinization has affected the development of oasis agriculture.In arid areas the spatial variation of soil moisture and sa lt content is marked-ly affected by groundwater,irratio nal irrigation in artificial oasis.By analyzing the soil moisture,salt content and groundwa-ter table in different areas of old oasis,new oasis and desert in Fukang Oa sis,it is shown that topography and l and use are main factors affecting the change of groundwater table,the redistribution of soil moisture and salt cont ent.When undis-turbed by human,the groundwater tab le rises from mountain to belt of grou nd water spillage,the groundwater t able rises mightily in plain because of the artificial irrigation,and the secondary salinization of soil is very seriou s.In oasis the ground-water table raises compared with that in the natural desert at the same latitude.In old oasis of upper reaches o f river salt has not been concentrated too much in rhizosphere because this area is the belt of groundwater drainage,soil t exture is coarse,the groundwater table is very low,and the salt in soil is drained i nto the groundwater.The new oasis has been the areas of salt accumulation becau se of the artificial irrigation,the salt content in soil is higher than th at in old oasis,so some cultivated fields here had to be thrown out because of the serious s econdary salinization.
文摘The dynamics of sap flow in relation to plant morphology and weather conditions during reproductive growth of soybean (Glycine max. L. Merr.) influence decisions pertaining to efficient irrigation management and other inputs for high yields. Field studies began in 2017 at Marianna, Arkansas to measure moisture dynamics of soybeans during seed fill (R5 to R7) using heat balance stem flow gauges. Sap flow was highly correlated to solar radiation with maximum rates observed during beginning seed fill (R5). A solar radiation efficiency (SRE) value, calculated as hourly sap flow rate per Watt-hour of solar radiation (g/Wh2), is proposed. The SRE relates to crop water demand and hydraulic resistance of the soil-root-stem-leaf-pod-seed pathway. SRE values ranged from 0 - 1.2 g/Wh2. Soil moisture, growth stage, time of day, and weather conditions influenced the SRE, with higher values observed in the morning, late afternoon, and during R5 growth. Peak sap flows of 39 g/h at R5, 25 g/h at R6, and 3 g/h at R7 occurred. The ratio of measured sap flow to estimated crop evapotranspiration was 0.9 to 1.3 during R5 to R6.9 (maximum dry matter), but dropped to 0.2 at R7. Further research is needed to better understand late season reproductive moisture dynamics in soybeans.
文摘Arid and semi-arid regions are characterized by low rainfall and high potential evaporative demand. Here, water is the major limiting factor for plant growth and productivity. Soil and surface hydrology properties (e.g. field capacity, infikration rates) effectively control the water re-distribution in the ecosystem, a fact that is aggravated in arid environments. Information of the spatial and temporal accessibility of soil water in desert ecosystems is limited. The purpose of the studies is the application of plant water potential to estimate the spatial and temporal variations of soil water availability in different arid ecosystems of the Negev (Israel) and southern Morocco. As model plants the evergreen shrubs Retama raetam, Thymelaea hirsuta and trees (Acacia tortilis) were chosen. Seasonal and spatial variations of the pre-dawn water potential (ψpd) were examined as diagnostic tool to determine water availability on the landscape level. The seasonal differences in the pre-dawn water potential were less pronounced on the dune compared to the interdune. This showed a better water availability on the dune slope. Also in the investigated wadis systems spatial differences of the water potential could be detected and related to the vegetation pattern.
文摘Soil moisture availability to plant roots is very important for crop growth. When soil moisture is not available in the root zone, plants wilt and yield is reduced. Adequate knowledge of the distribution of soil moisture within crop’s root zone and its linkage to the amount of water applied is very important as it assists in optimising the efficient use of water and reducing yield losses. The study aimed at evaluating the spatial redistribution of soil moisture within maize roots zone under different irrigation water application regimes. The study was conducted during two irrigatation seasons of 2012 at Nkango Irrigation Scheme, Malawi. The trials consisted of factorial arrangement in a Randomised Complete Block Design (RCBD). The factors were water and nitrogen and both were at four levels. The Triscan Sensor was used to measure volumetric soil moisture contents at different vertical and lateral points. The study inferred that the degree of soil moisture loss depends on the amount of water present in the soil. The rate of soil moisture loss in 100% of full water requirement regime (100% FWRR) treatment was higher than that in 40% FWRR treatment. This was particularly noticed when maize leaves were dry. In 100% FWRR treatment, the attraction between water and the surfaces of soil particles was not tight and as such “free” water was lost through evaporation and deep percolation, while in 40% FWRR, water was strongly attracted to and held on the soil particles surfaces and as such its potential of losing water was reduced.
文摘Knowledge of the soil water characteristic curve is fundamental for understanding unsaturated soils.The objective of this work was to find scanning hysteresis loops of two fine textured soils at water potentials below wilting point.This was done by equilibration over NaCl solutions with water potentials of-6.6 to-18.8 MPa at 25℃.When cycled repeatedly through a series of potentials in the range noted previously both soils exhibited a hysteresis effect.The experimental differences in water content between the drying and wetting soils at the same water potential were much too large to be accounted for by failure to allow sufficient time to attain equilibrium as predicted by the exponential decay model.The wetting versus drying differences were relatively small,however,at only 4 mg g-1 or less in absolute terms and about 3% of the mean of wetting and drying,in relative terms.Hysteresis should be a consideration when modeling biological and physical soil processes at water contents below the wilting point,where small differences in water content result in large potential energy changes.
文摘Soybean (Glycine max (L.) Merrill) is one of the most important oil and protein sources in the world. Interactive effect of elevated carbon dioxide (CO2) and soil water availability potentially impact future food security of the world under climate change. A rhizotron growth chamber experiment was conducted to study soil moisture interactions with elevated CO2 on gaseous exchange parameters of soybean under two CO2 concentrations (380 and 800 μmol·mol-1) with three soil moisture levels. Elevated CO2 decreased photosynthetic rate (11.1% and 10.8%), stomatal conductance (40.5% and 36.0%), intercellular CO2 concentration (16.68% and 12.28%), relative intercellular CO2 concentration (17.4% and 11.2%), and transpiration rate (43.6% and 39%) at 42 and 47 DAP. This down-regulation of photosynthesis was probably caused by low leaf nitrogen content and decrease in uptake of nutrients due to decrease in stomatal conductance and transpiration rate. Water use efficiency (WUE) increased under elevated CO2 because increase in total dry weight of plant was greater than that of water use under high CO2 conditions. Plants under normal and high soil moisture levels had significantly higher photosynthetic rate (7% to 16%) favored by optimum soil moisture content and high specific water content of soybean plants. Total dry matter production was significantly high when plants grown under elevated CO2 with normal (74.3% to 137.3%) soil moisture level. Photosynthetic rate was significantly and positively correlated with leaf conductance and intercellular CO2 concentration but WUE was significantly negatively correlated with leaf conductance, intercellular CO2 concentration and transpiration rate. However, the effect of high CO2 on plants depends on availability of nutrients and soil moisture for positive feedback from CO2 enrichment.
基金Supported by Key Research and Development Project of Guangxi Zhuang Autonomous Region(GK AB1850024)。
文摘[Objectives]The paper was to explore the effects of different mulching methods on soil moisture content and water movement in citrus orchards,and to provide the theoretical basis for improving water and weed management level in orchards.[Methods]Three ground mulching treatments including spraying herbicide(CK),grass-proof cloth cover(GPC)and natural grass mowing(NGM)were set up to analyze the soil moisture content and water flux characteristics of soil profile in the soil layers of 5,20,40 and 60 cm under different mulching methods.[Results]The GPC and NGM treatments significantly increased the soil moisture content in the soil layer of 0-60 cm at the young fruit stage and fruit expansion stage,which inhibited soil water evaporation and effectively improved soil water holding capacity,thus reducing irrigation water consumption and saving water resources.During the expansion stage of citrus fruits,the soil water flux in the soil layer of 0-60 cm in NGM and CK treatments was upward,and the upward soil water flux in NGM treatment was larger,which could mobilize more upward movement of deep soil moisture for uptake by citrus roots.However,the soil water flux in the soil layer of 0-60 cm in GPC treatment was downward,and the soil moisture conditions in the upper and middle layers were already sufficient for citrus growth.[Conclusions]Both GPC and NGM treatments can increase the overall soil moisture content.In the dry season,the soil moisture content in the upper layer treated by GPC is always relatively high,while more soil water in the lower layer move to the upper layer in NGM treatment,which has met the water requirements for citrus growth.
文摘Aiming at the limitation of traditional measuring soil water potential, the paper presents an information system based GSM to real-time monitor data coming from multiple data sources. The monitoring system, which consisted of monitoring center, GSM transmission channel and data detection terminal, was given. The detection terminal included the measuring station and TS-2 negative pressure meter, which was applied to measure soil water potential. Nowadays the system has been successfully applied to drip irrigation in the cotton field on farm in Xinjiang region. The system provides a feasible technology frame-work for collecting and processing wide geographical distribution data in farmland.
文摘On the basis of discussing the influencing mode of plant moisture stress on plant physiological process and the division of soil moisture availability range, the water suction values partitioning soil moisture were put forward, and then the corresponding water moistures under water stress were obtained by conversing together with characteristic curve of water moisture.
基金Supported by National 863 Project (2006AA100223)Program of Introducing Talents of Discipline to Hydrology Ecological and Water Security in Arid and Semi Arid Areas(B08039)~~
文摘[Objective] The aim was to provide theoretical basis for field moisture conserving irrigation.[Method] With Xiaoyan No.6 as tested material,three different kinds of mulching irrigation treatments were carried out (straw mulching;plastic mulching;PAM control adjustment mulching).With non-mulching treatment as control,moisture conserving effect of different treatments were compared.[Result] The results showed that the water consumption of winter wheat under different soil moisture conservation treatments was low at earlier stage and later stage,but high at mid-stage,which was consistent with the water consumption law of control.There were some differences in terms of consumption intensity because of irrigation schedule and growth condition;soil moisture conservation treatments could restrain ineffective evaporation of soil moisture before anthesis.We also found that the variation of soil moisture at depth of 0-20 cm in PAM and control treatment was dramatic.The soil moisture of the former was lower than the latter at the depth of 0-20 cm,but higher at the depth of 20-50 cm.The difference of soil moisture at the depth of 0-50 cm was significant.[Conclusion] Plastic mulching and straw mulching could restrain evaporation effectively.
基金Supported by National Natural Science Foundation of China(40871013)National Support Scheme Program(2006BAC01A11)~~
文摘In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecological aforestation in gully head and slope were selected to compare their effects on soil and water conservation.Soil and water loss,soil infiltration rate and the soil moisture dynamics of soil profile with the depth of 0-100 cm of these three patterns and their controls were observed by established standard observation plots in rainy season.The results showed that the soil and water loss of ecological afforestation and production forest terrace reduced by over 30% and 60% compared with their controls(without growth of any vegetation)respectively,showing significant control effect on the soil and water loss.Vegetation restoration also apparently increased the infiltration rate of soil(increased by 100%-200%).In rainy season,the soil moisture content of ecological afforestation and production forest terrace increased by over 30% and 100% compared with their controls.This indicated that vegetation restoration will not lead to soil aridity during the rainy season;vegetation restoration not only reduced the loss of surface water and soil fine particles,but also enhanced the infiltration of precipitation.These two effects made the soil moisture content increase throughout the profile.
基金This study was supported by the 973 Project(Grant No.2001CB309404)the National Natural Science Foundation of China(Grant No.40333031).
文摘The soil water index (SWI) from satellite remote sensing and the observational soil moisture from agricultural meteorological stations in eastern China are used to retrieve soil moisture. The analysis of correlation coefficient (CORR), root-mean-square-error (RMSE) and bias (BIAS) shows that the retrieved soil moisture is convincible and close to the observation. The method can overcome the difficulties in soil moisture observation on a large scale and the retrieved soil moisture may reflect the distribution of the real soil moisture objectively. The retrieved soil moisture is used as an initial scheme to replace initial conditions of soil moisture (NCEP) in the model MM5V3 to simulate the heavy rainfall in 1998. Three heavy rainfall processes during 13-14 June, 18-22 June, and 21-26 July 1998 in the Yangtze River valley are analyzed. The first two processes show that the intensity and location of simulated precipitation from SWI are better than those from NCEP and closer to the observed values. The simulated heavy rainfall for 21-26 July shows that the update of soil moisture initial conditions can improve the model's performance. The relationship between soil moisture and rainfall may explain that the stronger rainfall intensity for SWI in the Yangtze River valley is the result of the greater simulated soil moisture from SWI prior to the heavy rainfall date than that from NCEP, and leads to the decline of temperature in the corresponding area in the heavy rainfall days. Detailed analysis of the heavy rainfall on 13-14 June shows that both land-atmosphere interactions and atmospheric circulation were responsible for the heavy ralnfall, and it shows how the SWI simulation improves the simulation. The development of mesoscale systems plays an important role in the simulation regarding the change of initial soil moisture for SWI.
基金Impact assessment of land use on hydrologic regime in selected micro-watersheds in lesser Himalayas,Uttarakhand,India
文摘Soil moisture affects various hydrological processes, including evapotranspiration, infiltration, and runoff. Forested areas in the lower western Himalaya in India constitute the headwater catchments for many hill streams and have experienced degradation in forest cover due to grazing, deforestation and other human activities. This change in forest cover is likely to alter the soil moisture regime and, consequently, flow regimes in streams. The effect of change in forest cover on soil moisture regimes of this dry region has not been studied through long term field observations. We monitored soil matric potentials in two small watersheds in the lower western Himalaya of India. The watersheds consisted of homogeneous land covers of moderately dense oak forest and moderately degraded mixed oak forest. Observations were recorded at three sites at three depths in each watershed at fortnightly intervals for a period of three years. The soil moisture contents derived from soil potential measurements were analyzed to understand the spatial, temporal and profile variations under the two structures of forest cover. The analysis revealed large variations in soil moisture storage at different sites and depths and also during different seasons in each watershed. Mean soil moisture storage during monsoon, winter and summer seasons was higher under dense forest than under degraded forest. Highest soil moisture content occurred at shallow soil profiles, decreasing with depth in both watersheds. A high positive correlation was found between tree density and soil moisture content. Mean soil moisture content over the entire study period was higher under dense forest than under degraded forest. This indicated a potential for soil water storage under well managed oak forest. Because soil water storage is vital for sustenance of low flows, attention is needed on the management of oak forests in the Himalayan region.
基金This research was supported by National Key Sci-ence and Technology Item in "11th five year" period (No.2006BAD03A1205)Shandong Superior Industrial Item in "Breed-ing and Industrial Exploitation of Superior Liana,Adapting to Afforest-ing Barren Mountain".
文摘A study was conducted to determine the fitting soil moisture for the normal growth of two-year-old W. sinensis (Sims) Sweets by using gas exchange technique. Remarkable threshold values of net photosynthetic rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) were observed in the W. sinensis leaves treated by various soil moisture and photosynthetic available radiation (PAR). The fitting soil moisture for maintaining a high level of Pn and WUE was in range of 15.3%-26.5% of volumetric water content (VWC), of which the optimal VWC was 23.3%. Under the condition of fitting soil moisture, the light saturation point of leaves occurred at above 800μmol.m^2.s^-1, whereas under the condition of water deficiency (VWC, 11.9% and 8.2%) or oversaturation (VWC, 26.5%), the light saturation point was below 400μmol.m^-1.s^-1. Moreover, the light response curves suggested that a special point of PAR occurred with the increase in PAR. This special point was considered as the turning point that indicated the functional transition from stomatal limitation to non-stomatal limitation. The turning point was about 600, 1000, 1000 and 400 μmol.m^-2.s^-1, respectively, at VWC of 28.4%, 15.3%, 11.9% and 8.2%. In conclusion, W. sinensis had higher adaptive ability to water stress by regulating itself physiological function.
基金Projects(51878064, 51378072) supported by the National Natural Science Foundation of ChinaProjects(300102218408, 300102219108) supported by the Fundamental Research Funds for the Central Universities, China。
文摘In arid regions, water vapor diffusion predominates the total water migration in unsaturated soil, which significantly influences agriculture and engineering applications. With the aim of revealing the diffusion mechanism of water vapor in unsaturated soil, a water vapor migration test device was developed to conduct the water vapor migration indoor test. The test results demonstrate that the characteristics of water vapor diffusion in unsaturated soil conformed to Fick’s second law. A mathematical model for water vapor diffusion under isothermal conditions in unsaturated soil was established based on Fick’s law. Factors including the initial moisture content gradient, initial moisture content distribution, soil type and temperature that affect the water vapor diffusion coefficient were analyzed. The results show that there was good agreement between the moisture content calculated by the mathematical model and obtained by the indoor experiment. The vapor diffusion coefficient increased with increasing initial moisture content gradient and temperature. When the initial moisture content gradient is constant, the vapor diffusion coefficient increases with the increase of matrix suction ratio in dry and wet soil section. The effect of soil type on the water vapor diffusion coefficient was complex, as both the moisture content and soil particle sizes affected the water vapor diffusion.