The design and development of a wireless sensor network for soil moisture measurement in an unlevelled 10 km × 10 km area, is described. It was specifically deployed for the characterization of a reference area, ...The design and development of a wireless sensor network for soil moisture measurement in an unlevelled 10 km × 10 km area, is described. It was specifically deployed for the characterization of a reference area, in campaigns of calibration and validation of the space mission SMOS (Soil Moisture and Ocean Salinity), but the system is easily extensible to monitor other climatic or environmental variables, as well as to other regions of ecological interest. The network consists of a number of automatic measurement stations, strategically placed following soil homogeneity and land uses criteria. Every station includes acquisition, conditioning and communication systems. The electronics are battery operated with the help of solar cells, in order to have a total autonomous system. The collected data is then transmitted through long radio links, with ling ranges above 8 km. A standard PC linked to internet is finally used in order to control the whole network, to store the data, and to allow the remote access to the real-time data.展开更多
When choosing sites for monitoring of soil moisture for hydrological purposes,a suitable process that considers the factors influencing soil moisture level should be followed.In this study,two multi-criteria decision-...When choosing sites for monitoring of soil moisture for hydrological purposes,a suitable process that considers the factors influencing soil moisture level should be followed.In this study,two multi-criteria decision-making(MCDM)methods,the multi-influencing factor(MIF)method and the analytical hierarchy process(AHP)method,were used to identify the optimal soil moisture monitoring(SMM)sites in the Dry Creek Catchment in South Australia.The most representative areas for nine SMM sites were obtained using the MIF method,considering the factors of rainfall,soil type,land use,catchment slope,elevation,and upslope accumulated area(UAA).The AHP method was used to select the optimal sites using the site-specific criteria.30.3%of the catchment area in the Australian Water Resources Assessment Landscape(AWRA-L)Grid_DC2 can be considered acceptable as representative area with the MIF method.Four potential sites were evaluated for each AWRA-L grid using the relative weights of the site-specific criteria with the AHP method.The Grid_DC2 required two sites that had the highest overall weight chosen with the AHP analysis.The procedure was repeated for the remaining four AWRA-L grids within the study area to select the required SMM sites.展开更多
文摘The design and development of a wireless sensor network for soil moisture measurement in an unlevelled 10 km × 10 km area, is described. It was specifically deployed for the characterization of a reference area, in campaigns of calibration and validation of the space mission SMOS (Soil Moisture and Ocean Salinity), but the system is easily extensible to monitor other climatic or environmental variables, as well as to other regions of ecological interest. The network consists of a number of automatic measurement stations, strategically placed following soil homogeneity and land uses criteria. Every station includes acquisition, conditioning and communication systems. The electronics are battery operated with the help of solar cells, in order to have a total autonomous system. The collected data is then transmitted through long radio links, with ling ranges above 8 km. A standard PC linked to internet is finally used in order to control the whole network, to store the data, and to allow the remote access to the real-time data.
文摘When choosing sites for monitoring of soil moisture for hydrological purposes,a suitable process that considers the factors influencing soil moisture level should be followed.In this study,two multi-criteria decision-making(MCDM)methods,the multi-influencing factor(MIF)method and the analytical hierarchy process(AHP)method,were used to identify the optimal soil moisture monitoring(SMM)sites in the Dry Creek Catchment in South Australia.The most representative areas for nine SMM sites were obtained using the MIF method,considering the factors of rainfall,soil type,land use,catchment slope,elevation,and upslope accumulated area(UAA).The AHP method was used to select the optimal sites using the site-specific criteria.30.3%of the catchment area in the Australian Water Resources Assessment Landscape(AWRA-L)Grid_DC2 can be considered acceptable as representative area with the MIF method.Four potential sites were evaluated for each AWRA-L grid using the relative weights of the site-specific criteria with the AHP method.The Grid_DC2 required two sites that had the highest overall weight chosen with the AHP analysis.The procedure was repeated for the remaining four AWRA-L grids within the study area to select the required SMM sites.