期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Changes in Soil Organic Carbon After Five Years of Biowaste Compost Application in a Mediterranean Vegetable Cropping System 被引量:1
1
作者 Salvatore BAIANO Luigi MORRA 《Pedosphere》 SCIE CAS CSCD 2017年第2期328-337,共10页
Biowaste compost can influence soil organic matter accumulation directly or indirectly. A 5-year experiment was conducted to assess the influence of biowaste compost on the process of soil aggregation and soil organic... Biowaste compost can influence soil organic matter accumulation directly or indirectly. A 5-year experiment was conducted to assess the influence of biowaste compost on the process of soil aggregation and soil organic carbon (SOC) accumulation in a Mediterranean vegetable cropping system. The study involved four treatments: biowaste compost (COM), mineral NPK fertilizers (MIN), biowaste compost with half-dose N fertilizer (COMN), and unfertilized control (CK). The SOC stocks were increased in COM, COMN, and MIN by 20.2, 14.9, and 2.4 Mg ha-1 over CK, respectively. The SOC concentration was significantly related to mean weight diameter of aggregates (MWD) (P 〈 0.05, R^2 = 0.798 4) when CK was excluded from regression analysis. Compared to CK, COM and COMN increased the SOC amount in macroaggregates (〉 250 μm) by 2.7 and 0.6 g kg-1 soil, respectively, while MIN showed a loss of 0.4 g kg-1 soil. The SOC amount in free microaggregates (53-250 ttm) increased by 0.9, 1.6, and 1.0 g kg-1 soil for COM, COMN, and MIN, respectively, while those in the free silt plus clay aggregates (~ 53 ~m) did not vary significantly. However, when separating SOC in particle-size fractions, we found that more stable organic carbon associated with mineral fraction 〈 53 μm (MOM-C) increased significantly by 3.4, 2.2, and 0.7 g kg-1 soil for COM, COMN, and MIN, respectively, over CK, while SOC amount in fine particulate organic matter (POM) fraction (53-250 μm) increased only by 0.3 g kg-1 soil for both COM and COMN, with no difference in coarse POM 〉 250 μm. Therefore, we consider that biowaste compost could be effective in improving soil structure and long-term C sequestration as more stable MOM-C. 展开更多
关键词 AGGREGATES carbon sequestration mineral-associated organic matter particle-size fraction particulate organic matter soil structure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部