期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Soil particle size distribution and its relationship with soil water and salt under mulched drip irrigation in Xinjiang of China 被引量:34
1
作者 HU HongChang TIAN FuQiang HU HePing 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第6期1568-1574,共7页
Soil particle size distribution(PSD),one of the most important soil physical attributes,is of great importance to soil water movement,soil erosion and soil solute migration.In this study,the soil PSD of 563 soil sampl... Soil particle size distribution(PSD),one of the most important soil physical attributes,is of great importance to soil water movement,soil erosion and soil solute migration.In this study,the soil PSD of 563 soil samples from the mulched drip irrigated cotton fields in Xinjiang of China were measured by laser diffraction particle size analyzer.The soil PSD characteristics and its relations with soil water and salt were studied by using the combined methods of textural triangle,fractal and multifractal analysis.The results showed very low clay content(about 1.52%) while really high sand content of the studied soil,and a complex shape of bimodal or unimodal of soil PSD.The results also showed that the two indices,i.e.,standard deviation and the peak value of soil particle relative volumes,were good indicators of soil PSD and thus had good relations with fractal and multifractal characteristics.The correlative analysis further indicated that the mulched drip irrigation had a significant impact on the distribution of the soil salt,while this impact withered for the deeper soil layer.The soil texture feature was found to dominate soil water and salt distribution,especially the surface soil salt content and the deep soil water content. 展开更多
关键词 soil particle size distribution soil water and salt mulched drip irrigation fractal analysis multifractal analysis textural triangle
原文传递
Effects of soil conservation practices on soil erosion and the size selectivity of eroded sediment on cultivated slopes 被引量:2
2
作者 XU Lu ZHANG Dan +3 位作者 PROSHAD Ram CHEN Yu-lan HUANG Tian-fang UGURLU Aysenur 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1222-1234,共13页
Soil conservation practices can greatly affect the soil erosion process,but limited information is available about its influence on the particle size distribution(PSD)of eroded sediment,especially under natural rainfa... Soil conservation practices can greatly affect the soil erosion process,but limited information is available about its influence on the particle size distribution(PSD)of eroded sediment,especially under natural rainfall.In this study,the runoff,sediment yields,and effective/ultimate PSD were measured under two conventional tillage practices,downhill ridge tillage(DT)and plat tillage(PT)and three soil conservation practices,contour ridge tillage(CT),mulching with downhill ridge tillage(MDT),and mulching with contour ridge tillage(MCT)during 21 natural rainfall events in the lower Jinsha River.The results showed that(1)soil conservation practices had a significant effect on soil erosion.The conventional tillage of DT caused highest runoff depth(0.58 to 29.13 mm)and sediment yield(0.01 to 3.19 t hm^(-2)).Compared with DT,the annual runoff depths and sediment yields of CT,MDT and MCT decreased by 12.24%-49.75%and 40.79%-88.30%,respectively.(2)Soil conservation practices can reduce the decomposition of aggregates in sediments.The ratios of effective and ultimate particle size(E/U)of siltand sand-sized particles of DT and PT plots were close to 1,indicating that they were transported as primary particles,however,values lower/greater than 1 subject to CT,MDT and MCT plots indicated they were transported as aggregates.The ratios of E/U of claysized particles were all less than 1 independently of tillage practices.(3)The sediments of soil conservation practices were more selective than those of conventional tillage practices.For CT,MDT and MCT plots,the average enrichment ratios(ERs)of clay,silt and sand were 1.99,1.93 and 0.42,respectively,with enrichment of clay and silt and depletion of sand in sediments.However,the compositions of the eroded sediments of DT and PT plots were similar to that of the original soil.These findings support the use of both effective and ultimate particle size distributions for studying the size selectivity of eroded sediment,and provide a scientific basis for revealing the erosion mechanism in the purple soil area of China. 展开更多
关键词 Natural rainfall Runoff and sediment yield soil particle size distribution Enrichment ratio Purple soil
下载PDF
Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land,China
3
作者 NAN Weige DONG Zhibao +2 位作者 ZHOU Zhengchao LI Qiang CHEN Guoxiang 《Journal of Arid Land》 SCIE CSCD 2024年第1期14-28,共15页
Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabin... Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China. 展开更多
关键词 Sabina vulgaris plantation age soil physical and chemical properties soil particle size soil fertility vegetation restoration Mu Us Sandy Land
下载PDF
A field investigation of wind erosion in the farming–pastoral ecotone of northern China using a portable wind tunnel: a case study in Yanchi County 被引量:1
4
作者 nan ling dong zhibao +5 位作者 xiao weiqiang li chao xiao nan song shaopeng xiao fengjun du lingtong 《Journal of Arid Land》 SCIE CSCD 2018年第1期27-38,共12页
The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we co... The farming-pastoral ecotone in northern China is an extremely fr@e ecological zone where wind erosion of cropland and rangeland is easy to occur. In this study, using a portable wind tunnel as a wind simulator, we conducted field simulated wind erosion experiments combined with laboratory analysis to investigate wind erosion of soils in trampled rangeland, non-tilled cropland and tilled cropland in Yanchi County, China. The results showed that compared with rangeland, the cropland had a higher soil water holding capacity and lower soil bulk density. The wind erosion rate of trampled rangeland was much higher than those of non-tilled cropland and tilled cropland. For cropland, the wind erosion rate of the soil after tilling was surprisingly less than that of the soil before tilling. With increasing of wind speed, the volume mean diameter of the eroded sediment collected by the trough in the wind tunnel generally increased while the clay and silt content decreased for all soils. The temporal variation in wind erosion of the trampled rangeland indicated that particle entrainment and dust emission decreased exponentially with erosion time through the successive wind erosion events due to the exhaustion of erodible particles. 展开更多
关键词 wind erosion rate wind tunnel eroded sediment soil particle size CROPLAND RANGELAND semi-arid region
下载PDF
An experimental study on the influences of wind erosion on water erosion 被引量:2
5
作者 YANG Huimin GAO Yuan +3 位作者 LIN Degen ZOU Xueyong WANG Jing'ai SHI Peijun 《Journal of Arid Land》 SCIE CSCD 2017年第4期580-590,共11页
In semi-arid regions, complex erosion resulted from a combination of wind and water actions has led to a massive soil loss and a comprehensive understanding of its mechanism is the first step toward prevention of the ... In semi-arid regions, complex erosion resulted from a combination of wind and water actions has led to a massive soil loss and a comprehensive understanding of its mechanism is the first step toward prevention of the erosion. However, the mutual influences between wind erosion and water erosion have not been fully understood. This research used a wind tunnel and two rainfall simulators and simulated two rounds of alternations between wind erosion and water erosion(i.e., 1^(st) wind erosion–1^(st) water erosion and 2^(nd) wind erosion–2^(nd) water erosion) on three slopes(5°, 10°, and 15°) with six wind speeds(0, 9, 11, 13, 15, and 20 m/s) and five rainfall intensities(0, 30, 45, 60, and 75 mm/h). The objective was to analyze the influences of wind erosion on succeeding water erosion. Results showed that the effects of wind erosion on water erosion were not the same in the two rounds of tests. In the 1^(st) round of tests, wind erosion first restrained and then intensified water erosion mostly because the blocking effect of wind-sculpted micro-topography on surface flow was weakened with the increase in slope. In the 2^(nd) round of tests, wind erosion intensified water erosion on beds with no rills at gentle slopes and low rainfall intensities or with large-size rills at steep slopes and high rainfall intensities. Wind erosion restrained water erosion on beds with small rills at moderate slopes and moderate rainfall intensities. The effects were mainly related to the fine grain layer, rills and slope of the original bed in the 2^(nd) round of tests. The findings can deepen our understanding of complex erosion resulted from a combination of wind and water actions and provide scientific references to regional soil and water conservation. 展开更多
关键词 wind-water interaction sandy soil particle size surface roughness wind and water erosion
下载PDF
Unraveling the size distributions of surface properties for purple soil and yellow soil 被引量:2
6
作者 Ying Tang Hang Li +2 位作者 Xinmin Liu Hualing Zhu Rui Tian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第6期81-89,共9页
Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of th... Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of this study was to elucidate the surface properties of particles within targeted size ranges(i.e. 〉 10, 1-10, 0.5-1, 0.2-0.5 and 〈 0.2 μm) for a purple soil(Entisol) and a yellow soil(Ultisol) using the combined determination method. The mineralogy of corresponding particle-size fractions was determined by X-ray diffraction.We found that up to 80% of the specific surface area and 85% of the surface charge of the entire soil came from colloidal-sized particles(〈 1 μm), and almost half of the specific surface area and surface charge came from the smallest particles(〈 0.2 μm). Vermiculite,illite, montmorillonite and mica dominated in the colloidal-sized particles, of which the smallest particles had the highest proportion of vermiculite and montmorillonite. For a given size fraction, the purple soil had a larger specific surface area, stronger electrostatic field, and higher surface charge than the yellow soil due to differences in mineralogy.Likewise, the differences in surface properties among the various particle-size fractions can also be ascribed to mineralogy. Our results indicated that soil surface properties were essentially determined by the colloidal-sized particles, and the 〈 0.2 μm nanoparticles made the largest contribution to soil properties. The composition of clay minerals within the diverse particle-size fractions could fully explain the size distributions of surface properties. 展开更多
关键词 particle size distribution soil colloids Surface charge number Specific surface area Clay minerals
原文传递
Degradation of the fungicide metalaxyl and its non-extractable residue formation in soil clay and silt fractions 被引量:3
7
作者 Roschni KALATHOOR Jens BOTTERWECK +2 位作者 Andreas SCHÄFFER Burkhard SCHMIDT Jan SCHWARZBAUER 《Pedosphere》 SCIE CAS CSCD 2021年第4期549-559,共11页
The proportion of organic matter and mineral composition are important factors determining the formation and type of non-extractable residues(NERs) of pesticides in soil. In this study, we investigated the enantiosele... The proportion of organic matter and mineral composition are important factors determining the formation and type of non-extractable residues(NERs) of pesticides in soil. In this study, we investigated the enantioselectivity in degradation and NER formation of the chiral fungicide metalaxyl in soil particle size fractions(silt and clay). Microbial and extracellular enzyme activities during these processes were monitored in incubation of silt and clay samples isolated from sterilized and non-sterilized soil samples collected from a long-term agricultural field experimental site in Ultuna, Sweden. The temporal influence on the fate of the fungicide was noted by short-term(10-d) and long-term(92-d) incubations. Besides the acquisition of quantitative data with gas chromatography-mass spectrometry(GC/MS), stereoselective analyses were performed with chiral GC/MS. Quantitative results pointed to a higher metabolism rate of the pesticide through microbial activity than through extracellular enzyme activity. This was also confirmed by the enantioselective depletion of R-metalaxyl and the subsequent formation of R-metalaxyl acid in microbially active samples from non-sterilized soil. The silt fraction containing a high amount of organic matter exhibited a significant hydrolyzable proportion of metalaxyl NERs that was releasable under alkaline conditions. On the contrary, the clay fraction showed an enhanced affinity for covalently bound residues. Based on our results, we recommend differentiating between reversibly and irreversibly bound proportions of pesticides in persistence and environmental risk assessment because the reversible fraction contained potentially bioavailable amounts of residues that may be released under natural conditions. 展开更多
关键词 chiral fungicide ENANTIOSELECTIVITY metalaxyl enantiomer non-extractable pesticide residues organo-mineral complex pesticide degradation extracellular enzymes soil particle size fractions
原文传递
Monitoring and predicting the soil water content in the deeper soil profile of Loess Plateau,China 被引量:1
8
作者 Aijuan Wang Baoyuan Liu +1 位作者 Zhiqiang Wang Gang Liu 《International Soil and Water Conservation Research》 SCIE CSCD 2016年第1期6-11,共6页
Estimation of soil water content(SWC)in deep soil profiles is of crucial importance for strategic management of water resource for sustainable land use in arid and semi-arid zones,as well as for soil and water conserv... Estimation of soil water content(SWC)in deep soil profiles is of crucial importance for strategic management of water resource for sustainable land use in arid and semi-arid zones,as well as for soil and water conservation.Soil properties have a very important effect on SWC.This study aimed to analyze the influence of soil particle size on SWC,for the first time using soil particle size to estimate SWC in deep soil profiles.SWC was measured mainly in farmland,natural grasslands and plantations of Caragana from the surface to more than 20 m depth.The same soil samples were also tested for particle size.The results show that the soil desiccation is formed in the caragana forest in 3–18 m soil layers,but almost no formation in 18–24 m layers;water content of farmland and grassland is different in all soil profiles although they are both shallow rooted plants.Correlation analysis indicated that SWC could be well predicted by clay content and the close correlation between SWC and clay content yielded a coefficient of determination(R^(2))of 0.82 and 0.72,respectively,for farmland and grassland.After multiple regression analysis,a regression model was built using SWC,clay content and sand content data,giving R^(2)=0.66.The model provided reliable estimates of SWC profile based on textural class.This can assist in estimating water depletion by vegetation,by comparing moisture of farmland and grassland soils with that of plantation forests,and in selecting sustainable land use of arid land. 展开更多
关键词 Clay content Field capacity Sand content soil water content(SWC) soil particle size
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部