In order to explore the influence of soil resistivity on stray current in power supply system of urban rail transit,we establish an equivalent circuit model of the rail-to-ground structure based on resistance network ...In order to explore the influence of soil resistivity on stray current in power supply system of urban rail transit,we establish an equivalent circuit model of the rail-to-ground structure based on resistance network method first.After measuring the soil resistivity of a real subway system,a simulation model is established in Matlab to obtain the stray currents at different soil resistivities.Then the influence of soil resistivity on stray current is analyzed.Afterwards,to verify the rationality and reliability of the simulation model,we design a test circuit to measure the stray current and rail-to-ground voltage in a real subway system,and a comparison of the experimentally measured results and simulation results is presented.The results show that the stray current is the maximum when the soil resistivity is 211.57Ω·m;when the soil resistivity is 768.47Ω·m,the stray current is the minimum,that is,the smaller the soil resistivity,the greater the stray current.Therefore,the resistivity should be increased as much as possible when ramming the track foundation in urban rail transit system.展开更多
The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral re...The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated.In this paper,the ultimate lateral resistance of the composite pile was studied by finite element limit analysis(FELA)and theoretical upper-bound analysis.The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles.The effects of the enhanced soil thickness,strength,and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied.The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor(N P),and there is a critical thickness beyond which the thickness no longer affects the N P.Increasing the enhanced soil strength induced 6.2%-232.6%increase of N P.However,no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil.The maximum increment of N P is only 30.5%caused by the increase of interface adhesion factor(a).An empirical model was developed to calculate the N P of the composite pile,and the results show excellent agreement with the analytical results.展开更多
Soil resistivity is one of the key indicators of the corrosive classification assessment on metal materials in soil environment. This paper presents variance characters of various quantity of soil resistivity samples ...Soil resistivity is one of the key indicators of the corrosive classification assessment on metal materials in soil environment. This paper presents variance characters of various quantity of soil resistivity samples data based on the semi-variance function methods of Geo-statistical Analysis by analyzing the regional soil resistivity sampling data in Daqing area. Furthermore, the variance of the soil resistivity as well as entire soil circumstance due to different sampling amounts are also analyzed and compared by means of using the characteristic parameters of the semi-variance function. In addition, this work also studied the rational sampling quantities according to various measurement errors required and evaluated the local soil corrosivity on carbon steel based on the actual measuring data in this area.展开更多
In order to obtain reliable and effective upland soil resistivity measurements,it is necessary to know how much time after the rain stops is required before making soil resistivity observations so that the influence o...In order to obtain reliable and effective upland soil resistivity measurements,it is necessary to know how much time after the rain stops is required before making soil resistivity observations so that the influence of precipitation on the measurements can be eliminated.Based on the soil resistivity monitoring data at different depths obtained from the soil conductance automatic monitoring system using the triple-electrode method,and the precipitation data from the synchronous and automatic observing system in Hechuan County of Chongqing,this paper analyzed the effect of rain on the determination of upland soil resistivity measurement time.The results showed that the required interval time between the measurement and the termination of rain should be as follows:if the rainfall was less than 0.1 mm,the interval time was zero;the interval time was 24 h if the precipitation time was less than 1 h or the rainfall was 0.1-2.0 mm;the interval time was 72 h if the precipitation time was 2-10 h or the rainfall was within 2.1-5.0 mm;and the interval time of 72-232 h was observed when the precipitation time was 10-25 h or longer or the rainfall was 5.0-10.1 mm or larger.Relevant observations showed that the above conclusions were on the whole valid for different soil depths.On the other hand,the results indicated that the maximum variance ratio for the influence of precipitation on resistivity measurement was about 28.9%,and the average variance was about 3.9%.Moreover,a preliminary analysis also showed that the precipitation process time might play a more crucial role in the resistivity recovery time than the precipitation amount.It is also found that it is practically better to use the rank correlation method than the numerical correlation analysis method to determine the time break between the stop of rain and the time to carry out the soil resistivity measurement.展开更多
In this paper, soil resistivity and ground resistance at two different sites near an electrical substation are measured using a grounding system grid with and without rods. With the Wenner four-pole equal-method, the ...In this paper, soil resistivity and ground resistance at two different sites near an electrical substation are measured using a grounding system grid with and without rods. With the Wenner four-pole equal-method, the soil resistivity is measured at both selected sites, one of which contains wet soil while the other contains dry soil. Cymgrd simulation software is then used to determine the acceptability of these measured resistivity values by finding out the root mean square error between the measured and calculated values for both wet and dry soil sites. These values for wet and dry soil sties were found to be only 0 %and 4.92 %, respectively, and deemed acceptable. The measured soil resistivity values were then used to evaluate the ground resistance values of a grounding grid ‘with rod’for the wet soil site and ‘without rods’ for the dry soil site,and then compared with the simulated ground resistance values. These comparisons were also found to be in good agreement. In addition, ground potential rise, maximum permissible step and touch potentials have also been estimated using the simulation software.展开更多
With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improv...With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit.展开更多
The non-smooth surface morphology of dung beetle, Copris ochus, was analyzed. The bulldozing plates with bionic geometric non-smooth or the chemical uneven surface were designed for the soil sliding test based on the...The non-smooth surface morphology of dung beetle, Copris ochus, was analyzed. The bulldozing plates with bionic geometric non-smooth or the chemical uneven surface were designed for the soil sliding test based on the simulation of the bumpy surface of the dung beetle. Special black metals— with different contents of alloys of manganese, silicon, chromium, copper and rare earth— were developed for making geometric non-smooth and chemical uneven surfaces by means of surface welding at the surfaces of a middle carbon steel plate. Four metals, with different surface properties including hardness and water contact angle were used to make the bulldozing plates for measuring the soil sliding resistance. Test results of soil sliding resistance indicate that all the geometric non-smooth plates and the chemical uneven plates reducing soil friction. Considering the materials and surface morphology, the bionic plate can reduce the soil sliding resistance from 18.1 % up to 42.2%, compared to the traditional smooth bulldozing plate made from middle carbon steel. The test results also show that the smaller the normal load, the greater effect on resistance reduction by the bionic non-smooth surface plates.展开更多
To estimate the mean value of surface soil water content rapidly,accurately,and nonintrusively,field investigations on soil electrical resistivity(SER)with the Yokogawa 324400 earth resistivity meter and the surface(0...To estimate the mean value of surface soil water content rapidly,accurately,and nonintrusively,field investigations on soil electrical resistivity(SER)with the Yokogawa 324400 earth resistivity meter and the surface(0-150 cm)soil water content(SWC)with time domain reflectometry(TDR),together with the abiotic factors including soil texture,structure. and salinity concentrations were conducted in the Mongolian pine(Pinus sylvestris var.mongolica)plantations on a sandy land.The measurement of SER was based on the 4-probe Wenner configuration method.Relationships between the values of SWC and SER were obtained based on analysis of the abiotic factors of the research site,which play a key role in affecting the soil electrical resistivity.Results indicate that the SER meter could be used to estimate the mean value of SWC in the Mongolian pine plantations on the sandy land during the growing seasons.The bulky nature of the equipment simplified the cumbersome measurements of soil water content with the general methods.It must be noted that the Wenner configuration method could only provide the mean values of the SWC,and the soil texture,structure, temperature,and solute concentrations influenced the SER and further affected the estimation of the SWC by the SER meter.Therefore,the results of this study could be applied on a sandy land during the growing seasons only.However, the SWC of other soil types also may be obtained according to the individual soil types using the procedures of this study.展开更多
Biological soil crusts(biocrusts)are important landscape components that exist in various climates and habitats.The roles of biocrusts in numerous soil processes have been predominantly recognized in many dryland regi...Biological soil crusts(biocrusts)are important landscape components that exist in various climates and habitats.The roles of biocrusts in numerous soil processes have been predominantly recognized in many dryland regions worldwide.However,little is known about their effects on soil detachment process by overland flow,especially in humid climates.This study quantified the effects of moss-dominated biocrusts on soil detachment capacity(Dc)and soil erosion resistance to flowing water in the Three Gorges Reservoir Area which holds a subtropical humid climate.Potential factors driving soil detachment variation and their influencing mechanism were analyzed and elucidated.We designed five levels of coverage treatments(1%–20%,20%–40%,40%–60%,60%–80%,and 80%–100%)and a nearby bare land as control in a mossdominated site.Undisturbed soil samples were taken and subjected to water flow scouring in a hydraulic flume under six shear stresses ranging from 4.89 to 17.99 Pa.The results indicated that mean Dc of mosscovered soil varied from 0.008 to 0.081 kg m^-2 s^-1,which was 1.9 to 21.0 times lower than that of bare soil(0.160 kg m^-2 s^-1).Rill erodibility(Kr)of mosscovered soil ranged from 0.0095 to 0.0009 s m^-1,which was 2 to 20 times lower than that of bare soil(0.0187 s m^-1).Both relative soil detachment rate and Kr showed an exponential decay with increasing moss coverage,whereas the critical shear stress(τc)for different moss coverage levels did not differ significantly.Moss coverage,soil cohesion,and sand content were key factors affecting Dc,while moss coverage and soil bulk density were key factors affecting Kr.A power function of flow shear stress,soil cohesion,and moss coverage fitted well to estimate Dc(NSE=0.947).Our findings implied that biocrusts prevented soil detachment directly by their physical cover and indirectly by soil properties modification.Biocrusts could be rehabilitated as a promising soil conservation measure during ecological recovery to enhance soil erosion resistance in the Three Gorges Reservoir Area.展开更多
This study investigates the effects of increasing soil penetration resistance(SPR) on seedling morphology and seedling architecture. When seedlings of deciduous Cappadocian maple(Acer cappadocicum Gled.) were grown in...This study investigates the effects of increasing soil penetration resistance(SPR) on seedling morphology and seedling architecture. When seedlings of deciduous Cappadocian maple(Acer cappadocicum Gled.) were grown in a greenhouse in a loamy soil under a wide range of soil compactions, all morphological variables studied changed significantly with increasing SPR. The relationships between increasing SPR and all morphological responses except lateral root length followed a negative quadratic curve. All biomass variables except lateral root biomass showed a bell-shaped response with respect to SPR, with a maximum biomass variable between 0.6 and1.2 MPa, decreasing at higher soil compaction values. All allocation ratios were significantly affected by soil penetration resistance. Biomass allocation to roots was also affected by soil compaction. There was not a significant relationship between the specific stem length and increasing soil penetration resistance. The specific root length showed two trends to increasing SPR; it first decreased in response to the moderate compaction treatment(up to about 1.2 MPa), then increased significantly. We concluded that increasing soil compaction caused morphological changes to root and shoot sections of A.cappadocicum seedlings.展开更多
It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the...It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the theory study and engineering practice of ocean engineering and geotechnical engineering. It is traditionally considered that the resistance of soil structure gradually disappears with increasing stress level when the applied stress is beyond the consolidation yield stress. In this study, however, it is found that this traditional interpretation of the resistance of soil structure can not explain the strength behavior of natural marine deposits with a normally-consolidated stress history. A new interpretation of the resistance of soil structure is proposed based on the strength behavior. In the preyield state, the undrained strength of natural marine deposits is composed of two components: one developed by the applied stress and the other developed by the resistance of soil structure. When the applied stress is beyond the consolidation yield stress, the strength behavior is independent of the resistance of soil structure.展开更多
Along with the reduction of sediment yield of the Huanghe (Yellow) River, the erosion of the Huanghe River Delta aggravates, which has becomes an important factor that threatens the coastal protection structures. St...Along with the reduction of sediment yield of the Huanghe (Yellow) River, the erosion of the Huanghe River Delta aggravates, which has becomes an important factor that threatens the coastal protection structures. Starting from the study of the erosion resistibility of the sediment, this paper explores the internal mechanism of erosion phenomenon. This paper takes Diaokou as the study area and takes soils as samples which are mixed with clay into reconstructed samples whose ratio of clay content are 5%, 10%, 15%, 20% respectively, then dynamic tri-axial apparatus is applied to simulate wave loads of different intensity; then the resistibility of soil to erosion is determined via concentrated flow test and the structural property is determined via the disintegration test. Finally, the resistibility to erosion and the structural property of the non-compressed soil samples are compared with the compressed data. The results indicates that liquefaction failure exerts significant influence on the resistibility to erosion and the structural property of the silty soil in the Huanghe River Delta. Therefore, in the future erosion studies, the liquefaction phenomenon shall be fully considered.展开更多
There were 4 Acinetobacter lwoffii obtained from soil samples.The antimicrobial susceptibility of the strains to 16 antimicrobial agents was investigated using K-B method.Three isolates showed the multi-drug resistanc...There were 4 Acinetobacter lwoffii obtained from soil samples.The antimicrobial susceptibility of the strains to 16 antimicrobial agents was investigated using K-B method.Three isolates showed the multi-drug resistance.The presence of resistance genes and integrons was determined using PCR.The aadA 1,aac(3')-IIc,aph(3')-VII,aac(6')-Ib,sul2,cat2,floR,and tet(K)genes were detected,respectively.展开更多
Field measurements of driving resistances and heights of soil core during driving were made offshore and onshore of steel pipe piles. Measured data show that the height of soil core varies differently for piles of dif...Field measurements of driving resistances and heights of soil core during driving were made offshore and onshore of steel pipe piles. Measured data show that the height of soil core varies differently for piles of different diameters with the increase of penetration. Dynamic plugging could be assumed never to occur for steel pipe piles with diameters over 900 mm. Soil resistances at the time of continuous driving (SRD) are back analyzed from blow counts with an empirical distribution of resistances suppported by many early dynamic measurements. A method of predicting SRD is finally suggested.展开更多
One of the main concerns for pipeline on-bottom stability design is to properly predict ultimate soil resistance in severe ocean environments. A plane-strain finite element model is proposed to investigate the ultimat...One of the main concerns for pipeline on-bottom stability design is to properly predict ultimate soil resistance in severe ocean environments. A plane-strain finite element model is proposed to investigate the ultimate soil resistance to the partially-embedded pipeline under the action of ocean currents. Two typical end-constraints of the submarine pipelines are examined, i.e. freely-laid pipes and anti-rolling pipes. The proposed numerical model is verified with the existing mechanical-actuator experiments. The magnitude of lateral-soil-resistance coefficient for the examined anti-rolling pipes is much larger than that for the freely-laid pipes, indicating that the end-constraint condition significantly affects the lateral stability of the untrenched pipeline under ocean currents. The parametric study indicates that, the variation of lateral-soil-resistance coefficient with the dimensionless submerged weight of pipe is affected greatly by the angle of internal friction of soil, the pipe-soil friction coefficient, etc.展开更多
Eucalyptus harvesting,forwarding and soil tillage operations are among the main causes for compaction of forest soils,with potential impacts on productivity.This concern is especially important in areas with soils tha...Eucalyptus harvesting,forwarding and soil tillage operations are among the main causes for compaction of forest soils,with potential impacts on productivity.This concern is especially important in areas with soils that are naturally compacted(fragipans and duripans).In these soils,tillage operations include the use of subsoilers that can reach depths of more than one meter and require heavy tractors that exert high pressure on the soil.One of the ways to try to minimize the effect of this compaction is by retaining harvest residues.The objective of this study was to evaluate the impacts of eucalyptus harvesting on soil physical attributes,as well as to determine the potential of different types of residue management to reduce compaction from the soil tillage operation.Two experiments were conducted in the same area with a Yellow Argisol.In the first experiment,compaction caused by mechanized harvesting with harvester+forwarder was evaluated.In the second experiment,different managements of harvest residues were examined as potential modifiers of soil compaction during tillage for new plantings.For this,three managements systems were tested:(1)retention of all harvest residues and litter from the previous rotation(HR+L),(2)retention of litter from the previous rotation(L),and(3)removal of harvest residues and litter from the previous rotation(WR).Before and after harvest,sampling was carried out in the planting rows and inter-rows,and after tillage,samples were collected in the traffic line of the subsoiler-tractor set.In both experiments,undisturbed soil samples were collected from the center of the 0-10,10-20,20-40,40-60,and 60-100 cm layers to determine soil density and total porosity.In each period and site of evaluation,mechanical resistance to penetration up to the 60-cm depth was also determined.The harvesting operation increased soil density at 0-10 and 60-100 cm depths only in the inter-rows.Retention of harvest residues and litter(HR+L)after harvesting avoided increases in soil density and penetration resistance caused by machine traffic during tillage.The results indicate the importance of retaining harvest residues on forest soils for achieving sustainable utilization and for conserving soil quality.展开更多
The aim of this study was to analyze the effects of mechanical perforation of a golf course grassy sward, subject to maintenance machinery traffic and golf players trampling on its compaction and density. The evolutio...The aim of this study was to analyze the effects of mechanical perforation of a golf course grassy sward, subject to maintenance machinery traffic and golf players trampling on its compaction and density. The evolution of soil compaction state after aeration was also conducted in four stages of measurement. This operation aims to improve the structure and soil texture, which is also called "perforation" or "coring". The taken cores leaving on the soil holes of adjustable depth and density (350 holes/mE) are made with an aerator machine called Vertidrain. Soil resistance to penetration and density were determined at the initial state before aeration as well as 10, 20, and 30 days after aeration. Compared to the initial state, the results show that mechanical aeration greatly affects the grassy sward ground by reducing its resistance to penetration as 35% and 43% decrease in penetration resistance were noticed at 5 cm depth l0 and 20 days after aeration, respectively. Also, resistance to penetration decreased by 41% and 48% at 15 cm depth during the same two periods of time with a relatively constant moisture content. However, soil resistance to penetration at 5 and 15 cm depths only decreased by 21% and 26%, respectively. Regarding the soil density measured after aeration, a significant improvement at the 1% level with the method of variance analysis was observed compared to that at the initial state (e.g. 1.33 g·cm^-3) Indeed, the density was 1.29, 1.26 and 1.30 gcm^-3 10, 20 and 30 days after aeration, respectively.展开更多
A Storm Water Pumping Station funded by the World Bank is under construction and commissioning,of which the earthing system design is a crucial part for the electrical design.Based on IEEE and BS standards,this articl...A Storm Water Pumping Station funded by the World Bank is under construction and commissioning,of which the earthing system design is a crucial part for the electrical design.Based on IEEE and BS standards,this article fully introduces the analysis methodology and calculation of the system within the framework of the World Bank supported project.A solution of this practical case satisfied with the requirements of international standards is shown in order to bring experience and convenience for engineers who are dedicated to projects abroad.展开更多
The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failur...The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failure mode of deep embedded large cylinder structures. It can be used to calculate directly the soil resistance and the ultimate bearing capacity of the structure under usage. A new criterion of the large cylinder structure, which discriminates the deep embedded cylinder from the shallow embedded cylinder, is defined. Model tests prove that the proposed method is feasible for the analysis of deep embedded large cylinder structures.展开更多
Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate pr...Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate prediction of the spudcan penetration depth is quite instrumental in deciding on whether a jack-up unit is feasible to operate at the site. The prediction of a too large penetration depth may lead to the hesitation or even rejection of a site due to potential difficulties in the subsequent extraction process; the same is true of a too small depth prediction due to the problem of possible instability during operation. However, a deviation between predictive results and final field data usually exists, especially when a strong-over-soft soil is included in the strata. The ultimate decision sometimes to a great extent depends on the practical experience, not the predictive results given by the guideline. It is somewhat risky, but no choice. Therefore, a feasible predictive method for the spudcan penetration depth, especially in strata with strong-over-soft soil profile, is urgently needed by the jack-up industry. In view of this, a comprehensive investigation on methods of predicting spudcan penetration is executed. For types of different soil profiles, predictive methods for spudcan penetration depth are proposed, and the corresponding experiment is also conducted to validate these methods. In addition, to further verify the feasibility of the proposed methods, a practical engineering case encountered in the South China Sea is also presented, and the corresponding numerical and experimental results are also presented and discussed.展开更多
基金National Natural Science Foundation of China(Nos.51476073,51266004)Natural Science Foundation of Gansu Province(No.1308RJZA199)。
文摘In order to explore the influence of soil resistivity on stray current in power supply system of urban rail transit,we establish an equivalent circuit model of the rail-to-ground structure based on resistance network method first.After measuring the soil resistivity of a real subway system,a simulation model is established in Matlab to obtain the stray currents at different soil resistivities.Then the influence of soil resistivity on stray current is analyzed.Afterwards,to verify the rationality and reliability of the simulation model,we design a test circuit to measure the stray current and rail-to-ground voltage in a real subway system,and a comparison of the experimentally measured results and simulation results is presented.The results show that the stray current is the maximum when the soil resistivity is 211.57Ω·m;when the soil resistivity is 768.47Ω·m,the stray current is the minimum,that is,the smaller the soil resistivity,the greater the stray current.Therefore,the resistivity should be increased as much as possible when ramming the track foundation in urban rail transit system.
基金The work was supported by the National Natural Science Foundation of China(Grant No.51978540).
文摘The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years.However,how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated.In this paper,the ultimate lateral resistance of the composite pile was studied by finite element limit analysis(FELA)and theoretical upper-bound analysis.The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles.The effects of the enhanced soil thickness,strength,and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied.The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor(N P),and there is a critical thickness beyond which the thickness no longer affects the N P.Increasing the enhanced soil strength induced 6.2%-232.6%increase of N P.However,no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil.The maximum increment of N P is only 30.5%caused by the increase of interface adhesion factor(a).An empirical model was developed to calculate the N P of the composite pile,and the results show excellent agreement with the analytical results.
基金support of the National Natural Science Foundation of China (No.50971016)support of the National R&D Infrastructure and Facility Development Program of China (2005DKA10400)
文摘Soil resistivity is one of the key indicators of the corrosive classification assessment on metal materials in soil environment. This paper presents variance characters of various quantity of soil resistivity samples data based on the semi-variance function methods of Geo-statistical Analysis by analyzing the regional soil resistivity sampling data in Daqing area. Furthermore, the variance of the soil resistivity as well as entire soil circumstance due to different sampling amounts are also analyzed and compared by means of using the characteristic parameters of the semi-variance function. In addition, this work also studied the rational sampling quantities according to various measurement errors required and evaluated the local soil corrosivity on carbon steel based on the actual measuring data in this area.
基金Supported by the China Meteorological Administration R & D Special Fund for Public Welfare (meteorology) under Grant No.GYHY2007622
文摘In order to obtain reliable and effective upland soil resistivity measurements,it is necessary to know how much time after the rain stops is required before making soil resistivity observations so that the influence of precipitation on the measurements can be eliminated.Based on the soil resistivity monitoring data at different depths obtained from the soil conductance automatic monitoring system using the triple-electrode method,and the precipitation data from the synchronous and automatic observing system in Hechuan County of Chongqing,this paper analyzed the effect of rain on the determination of upland soil resistivity measurement time.The results showed that the required interval time between the measurement and the termination of rain should be as follows:if the rainfall was less than 0.1 mm,the interval time was zero;the interval time was 24 h if the precipitation time was less than 1 h or the rainfall was 0.1-2.0 mm;the interval time was 72 h if the precipitation time was 2-10 h or the rainfall was within 2.1-5.0 mm;and the interval time of 72-232 h was observed when the precipitation time was 10-25 h or longer or the rainfall was 5.0-10.1 mm or larger.Relevant observations showed that the above conclusions were on the whole valid for different soil depths.On the other hand,the results indicated that the maximum variance ratio for the influence of precipitation on resistivity measurement was about 28.9%,and the average variance was about 3.9%.Moreover,a preliminary analysis also showed that the precipitation process time might play a more crucial role in the resistivity recovery time than the precipitation amount.It is also found that it is practically better to use the rank correlation method than the numerical correlation analysis method to determine the time break between the stop of rain and the time to carry out the soil resistivity measurement.
文摘In this paper, soil resistivity and ground resistance at two different sites near an electrical substation are measured using a grounding system grid with and without rods. With the Wenner four-pole equal-method, the soil resistivity is measured at both selected sites, one of which contains wet soil while the other contains dry soil. Cymgrd simulation software is then used to determine the acceptability of these measured resistivity values by finding out the root mean square error between the measured and calculated values for both wet and dry soil sites. These values for wet and dry soil sties were found to be only 0 %and 4.92 %, respectively, and deemed acceptable. The measured soil resistivity values were then used to evaluate the ground resistance values of a grounding grid ‘with rod’for the wet soil site and ‘without rods’ for the dry soil site,and then compared with the simulated ground resistance values. These comparisons were also found to be in good agreement. In addition, ground potential rise, maximum permissible step and touch potentials have also been estimated using the simulation software.
基金supported by National Natural Science Foundation of China(Nos.51476073,51266004)Natural Science Foundation of Gansu Province(No.138RJZA199).
文摘With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit.
文摘The non-smooth surface morphology of dung beetle, Copris ochus, was analyzed. The bulldozing plates with bionic geometric non-smooth or the chemical uneven surface were designed for the soil sliding test based on the simulation of the bumpy surface of the dung beetle. Special black metals— with different contents of alloys of manganese, silicon, chromium, copper and rare earth— were developed for making geometric non-smooth and chemical uneven surfaces by means of surface welding at the surfaces of a middle carbon steel plate. Four metals, with different surface properties including hardness and water contact angle were used to make the bulldozing plates for measuring the soil sliding resistance. Test results of soil sliding resistance indicate that all the geometric non-smooth plates and the chemical uneven plates reducing soil friction. Considering the materials and surface morphology, the bionic plate can reduce the soil sliding resistance from 18.1 % up to 42.2%, compared to the traditional smooth bulldozing plate made from middle carbon steel. The test results also show that the smaller the normal load, the greater effect on resistance reduction by the bionic non-smooth surface plates.
基金Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KZCX3-SW-418)the 100 Talents Program of the Chinese Academy of Sciences,China.
文摘To estimate the mean value of surface soil water content rapidly,accurately,and nonintrusively,field investigations on soil electrical resistivity(SER)with the Yokogawa 324400 earth resistivity meter and the surface(0-150 cm)soil water content(SWC)with time domain reflectometry(TDR),together with the abiotic factors including soil texture,structure. and salinity concentrations were conducted in the Mongolian pine(Pinus sylvestris var.mongolica)plantations on a sandy land.The measurement of SER was based on the 4-probe Wenner configuration method.Relationships between the values of SWC and SER were obtained based on analysis of the abiotic factors of the research site,which play a key role in affecting the soil electrical resistivity.Results indicate that the SER meter could be used to estimate the mean value of SWC in the Mongolian pine plantations on the sandy land during the growing seasons.The bulky nature of the equipment simplified the cumbersome measurements of soil water content with the general methods.It must be noted that the Wenner configuration method could only provide the mean values of the SWC,and the soil texture,structure, temperature,and solute concentrations influenced the SER and further affected the estimation of the SWC by the SER meter.Therefore,the results of this study could be applied on a sandy land during the growing seasons only.However, the SWC of other soil types also may be obtained according to the individual soil types using the procedures of this study.
基金funded by the National Natural Science Foundation of China(Grant No.41877082)the Fundamental Research Funds for Central Public Welfare Research Institutes(Grant No.CKSF2019410TB)+2 种基金the National Natural Science Foundation for Young Scientists of China(Grant No.41701316,51909011)the National Key R&D Program of China(Grant No.2017YFC050530302)the Demonstration Project of Water Conservancy Technology(Grant No.SF-201905)。
文摘Biological soil crusts(biocrusts)are important landscape components that exist in various climates and habitats.The roles of biocrusts in numerous soil processes have been predominantly recognized in many dryland regions worldwide.However,little is known about their effects on soil detachment process by overland flow,especially in humid climates.This study quantified the effects of moss-dominated biocrusts on soil detachment capacity(Dc)and soil erosion resistance to flowing water in the Three Gorges Reservoir Area which holds a subtropical humid climate.Potential factors driving soil detachment variation and their influencing mechanism were analyzed and elucidated.We designed five levels of coverage treatments(1%–20%,20%–40%,40%–60%,60%–80%,and 80%–100%)and a nearby bare land as control in a mossdominated site.Undisturbed soil samples were taken and subjected to water flow scouring in a hydraulic flume under six shear stresses ranging from 4.89 to 17.99 Pa.The results indicated that mean Dc of mosscovered soil varied from 0.008 to 0.081 kg m^-2 s^-1,which was 1.9 to 21.0 times lower than that of bare soil(0.160 kg m^-2 s^-1).Rill erodibility(Kr)of mosscovered soil ranged from 0.0095 to 0.0009 s m^-1,which was 2 to 20 times lower than that of bare soil(0.0187 s m^-1).Both relative soil detachment rate and Kr showed an exponential decay with increasing moss coverage,whereas the critical shear stress(τc)for different moss coverage levels did not differ significantly.Moss coverage,soil cohesion,and sand content were key factors affecting Dc,while moss coverage and soil bulk density were key factors affecting Kr.A power function of flow shear stress,soil cohesion,and moss coverage fitted well to estimate Dc(NSE=0.947).Our findings implied that biocrusts prevented soil detachment directly by their physical cover and indirectly by soil properties modification.Biocrusts could be rehabilitated as a promising soil conservation measure during ecological recovery to enhance soil erosion resistance in the Three Gorges Reservoir Area.
基金supported by the Iran National Science Foundation(INSF)(No.93014726)
文摘This study investigates the effects of increasing soil penetration resistance(SPR) on seedling morphology and seedling architecture. When seedlings of deciduous Cappadocian maple(Acer cappadocicum Gled.) were grown in a greenhouse in a loamy soil under a wide range of soil compactions, all morphological variables studied changed significantly with increasing SPR. The relationships between increasing SPR and all morphological responses except lateral root length followed a negative quadratic curve. All biomass variables except lateral root biomass showed a bell-shaped response with respect to SPR, with a maximum biomass variable between 0.6 and1.2 MPa, decreasing at higher soil compaction values. All allocation ratios were significantly affected by soil penetration resistance. Biomass allocation to roots was also affected by soil compaction. There was not a significant relationship between the specific stem length and increasing soil penetration resistance. The specific root length showed two trends to increasing SPR; it first decreased in response to the moderate compaction treatment(up to about 1.2 MPa), then increased significantly. We concluded that increasing soil compaction caused morphological changes to root and shoot sections of A.cappadocicum seedlings.
文摘It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the theory study and engineering practice of ocean engineering and geotechnical engineering. It is traditionally considered that the resistance of soil structure gradually disappears with increasing stress level when the applied stress is beyond the consolidation yield stress. In this study, however, it is found that this traditional interpretation of the resistance of soil structure can not explain the strength behavior of natural marine deposits with a normally-consolidated stress history. A new interpretation of the resistance of soil structure is proposed based on the strength behavior. In the preyield state, the undrained strength of natural marine deposits is composed of two components: one developed by the applied stress and the other developed by the resistance of soil structure. When the applied stress is beyond the consolidation yield stress, the strength behavior is independent of the resistance of soil structure.
文摘Along with the reduction of sediment yield of the Huanghe (Yellow) River, the erosion of the Huanghe River Delta aggravates, which has becomes an important factor that threatens the coastal protection structures. Starting from the study of the erosion resistibility of the sediment, this paper explores the internal mechanism of erosion phenomenon. This paper takes Diaokou as the study area and takes soils as samples which are mixed with clay into reconstructed samples whose ratio of clay content are 5%, 10%, 15%, 20% respectively, then dynamic tri-axial apparatus is applied to simulate wave loads of different intensity; then the resistibility of soil to erosion is determined via concentrated flow test and the structural property is determined via the disintegration test. Finally, the resistibility to erosion and the structural property of the non-compressed soil samples are compared with the compressed data. The results indicates that liquefaction failure exerts significant influence on the resistibility to erosion and the structural property of the silty soil in the Huanghe River Delta. Therefore, in the future erosion studies, the liquefaction phenomenon shall be fully considered.
基金supported by the Innovation Project Foundation of Chinese Academy of Agricultural Sciences(20140204066NY)Development Plan of Science and Technology in Jilin Province(20150520128JH)the Special Fund for Agro-Scientific Research in the Public Interest from the Ministry of Agriculture,China(201303042)
文摘There were 4 Acinetobacter lwoffii obtained from soil samples.The antimicrobial susceptibility of the strains to 16 antimicrobial agents was investigated using K-B method.Three isolates showed the multi-drug resistance.The presence of resistance genes and integrons was determined using PCR.The aadA 1,aac(3')-IIc,aph(3')-VII,aac(6')-Ib,sul2,cat2,floR,and tet(K)genes were detected,respectively.
文摘Field measurements of driving resistances and heights of soil core during driving were made offshore and onshore of steel pipe piles. Measured data show that the height of soil core varies differently for piles of different diameters with the increase of penetration. Dynamic plugging could be assumed never to occur for steel pipe piles with diameters over 900 mm. Soil resistances at the time of continuous driving (SRD) are back analyzed from blow counts with an empirical distribution of resistances suppported by many early dynamic measurements. A method of predicting SRD is finally suggested.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences(Grant No.KJCX2-YW-L07)
文摘One of the main concerns for pipeline on-bottom stability design is to properly predict ultimate soil resistance in severe ocean environments. A plane-strain finite element model is proposed to investigate the ultimate soil resistance to the partially-embedded pipeline under the action of ocean currents. Two typical end-constraints of the submarine pipelines are examined, i.e. freely-laid pipes and anti-rolling pipes. The proposed numerical model is verified with the existing mechanical-actuator experiments. The magnitude of lateral-soil-resistance coefficient for the examined anti-rolling pipes is much larger than that for the freely-laid pipes, indicating that the end-constraint condition significantly affects the lateral stability of the untrenched pipeline under ocean currents. The parametric study indicates that, the variation of lateral-soil-resistance coefficient with the dimensionless submerged weight of pipe is affected greatly by the angle of internal friction of soil, the pipe-soil friction coefficient, etc.
基金The work is fully funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil(CAPES,finance code 001)We also thank the Programa em Nutrição e Solos Florestais(NUTREE—UFV).
文摘Eucalyptus harvesting,forwarding and soil tillage operations are among the main causes for compaction of forest soils,with potential impacts on productivity.This concern is especially important in areas with soils that are naturally compacted(fragipans and duripans).In these soils,tillage operations include the use of subsoilers that can reach depths of more than one meter and require heavy tractors that exert high pressure on the soil.One of the ways to try to minimize the effect of this compaction is by retaining harvest residues.The objective of this study was to evaluate the impacts of eucalyptus harvesting on soil physical attributes,as well as to determine the potential of different types of residue management to reduce compaction from the soil tillage operation.Two experiments were conducted in the same area with a Yellow Argisol.In the first experiment,compaction caused by mechanized harvesting with harvester+forwarder was evaluated.In the second experiment,different managements of harvest residues were examined as potential modifiers of soil compaction during tillage for new plantings.For this,three managements systems were tested:(1)retention of all harvest residues and litter from the previous rotation(HR+L),(2)retention of litter from the previous rotation(L),and(3)removal of harvest residues and litter from the previous rotation(WR).Before and after harvest,sampling was carried out in the planting rows and inter-rows,and after tillage,samples were collected in the traffic line of the subsoiler-tractor set.In both experiments,undisturbed soil samples were collected from the center of the 0-10,10-20,20-40,40-60,and 60-100 cm layers to determine soil density and total porosity.In each period and site of evaluation,mechanical resistance to penetration up to the 60-cm depth was also determined.The harvesting operation increased soil density at 0-10 and 60-100 cm depths only in the inter-rows.Retention of harvest residues and litter(HR+L)after harvesting avoided increases in soil density and penetration resistance caused by machine traffic during tillage.The results indicate the importance of retaining harvest residues on forest soils for achieving sustainable utilization and for conserving soil quality.
文摘The aim of this study was to analyze the effects of mechanical perforation of a golf course grassy sward, subject to maintenance machinery traffic and golf players trampling on its compaction and density. The evolution of soil compaction state after aeration was also conducted in four stages of measurement. This operation aims to improve the structure and soil texture, which is also called "perforation" or "coring". The taken cores leaving on the soil holes of adjustable depth and density (350 holes/mE) are made with an aerator machine called Vertidrain. Soil resistance to penetration and density were determined at the initial state before aeration as well as 10, 20, and 30 days after aeration. Compared to the initial state, the results show that mechanical aeration greatly affects the grassy sward ground by reducing its resistance to penetration as 35% and 43% decrease in penetration resistance were noticed at 5 cm depth l0 and 20 days after aeration, respectively. Also, resistance to penetration decreased by 41% and 48% at 15 cm depth during the same two periods of time with a relatively constant moisture content. However, soil resistance to penetration at 5 and 15 cm depths only decreased by 21% and 26%, respectively. Regarding the soil density measured after aeration, a significant improvement at the 1% level with the method of variance analysis was observed compared to that at the initial state (e.g. 1.33 g·cm^-3) Indeed, the density was 1.29, 1.26 and 1.30 gcm^-3 10, 20 and 30 days after aeration, respectively.
文摘A Storm Water Pumping Station funded by the World Bank is under construction and commissioning,of which the earthing system design is a crucial part for the electrical design.Based on IEEE and BS standards,this article fully introduces the analysis methodology and calculation of the system within the framework of the World Bank supported project.A solution of this practical case satisfied with the requirements of international standards is shown in order to bring experience and convenience for engineers who are dedicated to projects abroad.
文摘The large cylinder is a new-type structure that has been applied to harbor and offshore engineering. An analytic method of the relationship between loads and the structure displacement is developed based on the failure mode of deep embedded large cylinder structures. It can be used to calculate directly the soil resistance and the ultimate bearing capacity of the structure under usage. A new criterion of the large cylinder structure, which discriminates the deep embedded cylinder from the shallow embedded cylinder, is defined. Model tests prove that the proposed method is feasible for the analysis of deep embedded large cylinder structures.
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2008AA092701-3)
文摘Jack-up units are extensively playing a successful role in drilling engineering around the world, and their safety and efficiency take more and more attraction in both research and engineering practice. An accurate prediction of the spudcan penetration depth is quite instrumental in deciding on whether a jack-up unit is feasible to operate at the site. The prediction of a too large penetration depth may lead to the hesitation or even rejection of a site due to potential difficulties in the subsequent extraction process; the same is true of a too small depth prediction due to the problem of possible instability during operation. However, a deviation between predictive results and final field data usually exists, especially when a strong-over-soft soil is included in the strata. The ultimate decision sometimes to a great extent depends on the practical experience, not the predictive results given by the guideline. It is somewhat risky, but no choice. Therefore, a feasible predictive method for the spudcan penetration depth, especially in strata with strong-over-soft soil profile, is urgently needed by the jack-up industry. In view of this, a comprehensive investigation on methods of predicting spudcan penetration is executed. For types of different soil profiles, predictive methods for spudcan penetration depth are proposed, and the corresponding experiment is also conducted to validate these methods. In addition, to further verify the feasibility of the proposed methods, a practical engineering case encountered in the South China Sea is also presented, and the corresponding numerical and experimental results are also presented and discussed.