期刊文献+
共找到6,831篇文章
< 1 2 250 >
每页显示 20 50 100
A Note on Soil Structure Resistance of Natural Marine Deposits 被引量:4
1
作者 洪振舜 刘松玉 刘志方 《海洋工程:英文版》 EI 2004年第2期321-326,共6页
It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the... It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the theory study and engineering practice of ocean engineering and geotechnical engineering. It is traditionally considered that the resistance of soil structure gradually disappears with increasing stress level when the applied stress is beyond the consolidation yield stress. In this study, however, it is found that this traditional interpretation of the resistance of soil structure can not explain the strength behavior of natural marine deposits with a normally-consolidated stress history. A new interpretation of the resistance of soil structure is proposed based on the strength behavior. In the preyield state, the undrained strength of natural marine deposits is composed of two components: one developed by the applied stress and the other developed by the resistance of soil structure. When the applied stress is beyond the consolidation yield stress, the strength behavior is independent of the resistance of soil structure. 展开更多
关键词 consolidation yield stress marine clays normally-consolidated stress history postyield state resistance of soil structure strength behavior structured soils
下载PDF
Dynamic Study on Water Stability of Soil Structure and Soil Characteristics of Several Types of Soils in Southwest China 被引量:2
2
作者 SHEN Nan HE Yurong XU Xiangming 《Wuhan University Journal of Natural Sciences》 CAS 2008年第3期336-342,共7页
Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measurin... Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measuring method for water stability of soil structure and conduct the comparative study on the quality of the soil structure. The results indicated that (1) The water stability dynamic characteristic of the soil structure could well reflect the maintaining capability of the soil structure as time goes on. (2) The quality of several soil structures in southwest China was sequenced as follows: Stagnic Anthrosols 〉 Ustic Vertisols 〉 Ustic Ferrosols. (3) The water stability of soil structure is very positively correlated with the capillary porosity and the clay particle (D 〈 0.002 mm) content (Co), but is very negatively correlated with the silt (D is 0.05-0.002 ram) content (Csc), and (4) The dynamic functional equation of the water stability of soil structure in southwest China was established, so that the water stability characteristics of various soil structures could be quantitatively expressed and the quality of different soil structures can be quantitatively compared from each other. 展开更多
关键词 soil structure dynamic water stability soil erosion
下载PDF
Effects of different concentrations of super-absorbent polymers on soil structure and hydro-physical properties following continuous wetting and drying cycles 被引量:1
3
作者 JI Bing-yi ZHAO Chi-peng +3 位作者 WU Yue HAN Wei SONG Ji-qing BAI Wen-bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第11期3368-3381,共14页
Super-absorbent polymers(SAPs)are widely used chemical water-saving materials,which play an active role in the accumulation of soil water and the improvement of soil structure.Little is known about their performance w... Super-absorbent polymers(SAPs)are widely used chemical water-saving materials,which play an active role in the accumulation of soil water and the improvement of soil structure.Little is known about their performance with repeated usage or about factors influencing their efficiency under alternate wetting and drying cycles.In this study,various concentrations of SAP(0,0.1,0.2 and 0.3%)in soil following three continuous wetting and drying cycles(T1,T2 and T3),were studied to determine effects on soil structure stability and hydro-physical properties.The results indicated that the SAP improved soil water supply capacity under conditions of mild drought(T2)and sufficient irrigation(T3)at concentrations of 0.2 and 0.3%,but a reduction was observed under severe drought conditions(T1),which was negatively correlated with the SAP concentration.The physical adsorption of the SAP by soil and the chemical connection between the SAP and soil mineral colloids as Si-O-Si bonds,-OH bonds and different crystalline silica were the important factors that directly lead to the reduction of water retention capacities of the SAP with alternating wet and dry conditions.Compared with the control,the soil liquid phase ratios of the SAP treatments were increased by8.8-202.7%in the T1 and T2 cycles,which would have led to a decrease in the soil air phase ratios.After repeated wetting and drying cycles,the SAP treatments increased the amount of>0.25 mm soil aggregates and the contents of water-stable macro-aggregate(R_(0.25)),and decreased the amount of<0.053 mm soil aggregates,especially with higher concentrations of the SAP.Increases in mean weight diameter(MWD)and geometric mean diameter(GMD),and declines in fractal dimension(D)and unstable aggregates index(E_(LT))were all observed with the SAP treatments,which indicated an improvement in soil stability and structure.It was concluded that the distribution and stability of soil aggregates and soil water supply capacity was closely related to SAP concentration,soil moisture condition and the interaction between the SAP and soil particles. 展开更多
关键词 super-absorbent polymer(SAP) soil water soil structure soil aggregate soil colloid
下载PDF
Material Properties and Tensile Behaviors of Polypropylene Geogrid and Geonet for Reinforcement of Soil Structures
4
作者 张季如 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第3期83-86,共4页
The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic bala... The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic balance and aperture sizes of the geonets were exactly measured using a computer.Laboratory tests were performed using a small tensile machine capable of monitoring tensile force and displacement.Tensile failure behaviors were described,and tensile index properties such as tensile strength,maximum tensile strain,tensile forces corresponding to different strains in the geogrids and gronets were obtained.The characterization of these indexes is discussed. 展开更多
关键词 material property tensile behavior POLYPROPYLENE GEOGRID GEONET reinforcement of soil structure
下载PDF
A novel simple procedure to consider seismic soil structure interaction effects in 2D models
5
作者 Juan Diego Jaramillo Juan David Gómez +1 位作者 Doriam Restrepo Santiago Rivera 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第3期535-543,共9页
A method is proposed to estimate the seismic soil-structure-interaction (SSI) effects for use in engineering practice. It is applicable to 2D structures subjected to vertically incident shear waves supported by homo... A method is proposed to estimate the seismic soil-structure-interaction (SSI) effects for use in engineering practice. It is applicable to 2D structures subjected to vertically incident shear waves supported by homogenous half-spaces. The method is attractive since it keeps the simplicity of the spectral approach, overcomes some of the difficulties and inaccuracies of existing classical techniques and yet it considers a physically consistent excitation. This level of simplicity is achieved through a response spectra modification factor that can be applied to the free-field 5%-damped response spectra to yield design spectral ordinates that take into account the scattered motions introduced by the interaction effects. The modification factor is representative of the Transfer Function (TF) between the structural relative displacements and the free- field motion, which is described in terms of its maximum amplitude and associated frequency. Expressions to compute the modification factor by practicing engineers are proposed based upon a parametric study using 576 cases representative of actual structures. The method is tested in 10 cases spanning a wide range of common fundamental vibration periods. 展开更多
关键词 seismic soil structure interaction simplified procedures modified response spectra
下载PDF
Synergistic combination of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria modulates morpho-physiological characteristics and soil structure in Nitraria tangutorum bobr.Under saline soil conditions
6
作者 Jing Pan CuiHua Huang +5 位作者 Fei Peng Tao Wang Jie Liao ShaoXiu Ma QuanGang You Xian Xue 《Research in Cold and Arid Regions》 CSCD 2022年第6期393-402,共10页
Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activ... Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR. 展开更多
关键词 Nitraria tangutorum Bobr. Arbuscular mycorrhizal fungi Plant growth-promoting rhizobacteria Morphological development Photosynthesis physiology soil structure
下载PDF
Influence of spiral anchor composite foundation on seismic vulnerability of raw soil structure
7
作者 Shiwei Hou Guangliang Gao +2 位作者 Hao Zhang Zhanwen Lai Junyan Han 《Earthquake Research Advances》 CSCD 2022年第4期79-85,共7页
A typical single-layer raw soil structure in villages and towns in China is taken as the research object.In the probabilistic seismic demand analysis,the seismic demand model is obtained by the incremental dynamic tim... A typical single-layer raw soil structure in villages and towns in China is taken as the research object.In the probabilistic seismic demand analysis,the seismic demand model is obtained by the incremental dynamic time history analysis method.The seismic vulnerability analysis is carried out for the raw soil structure of nonfoundation,strip foundation,and spiral anchor composite foundation,respectively.The spiral anchor composite foundation can reduce the seismic response and failure state of raw soil structure,and the performance level of the structure is significantly improved.Structural requirements sample data with the same ground motion intensity are analyzed by linear regression statistics.Compared with the probabilistic seismic demand model under various working conditions,the seismic demand increases gradually with the increase of intensity.The seismic vulnerability curve is summarized for comparative analysis.With the gradual deepening of the limit state,the reduction effect of spiral anchor composite foundation on the exceedance probability becomes more and more obvious,which can reduce the probability of structural failure to a certain extent. 展开更多
关键词 Spiral anchor Raw soil structure Probabilistic seismic demand analysis Incremental dynamic time history analysis Seismic vulnerability analysis
下载PDF
Micromorphological Analysis of Soil Structure under No Tillage Management in the Black Soil Zone of Northeast China 被引量:7
8
作者 ZHOU Hu LI Baoguo LU Yizhong 《Journal of Mountain Science》 SCIE CSCD 2009年第2期173-180,共8页
The structure of the "black soil" in Northeast China has been greatly deteriorated by long-term intensive conventional mouldboard plow tillage (CT) practices. In this study, micromorphological observation an... The structure of the "black soil" in Northeast China has been greatly deteriorated by long-term intensive conventional mouldboard plow tillage (CT) practices. In this study, micromorphological observation and image analysis of soil thin sections were conducted to evaluate the impacts of 21 years (1986-2007) of no tillage (NT) on soil structure as compared to CT in an experiment near Gongzhuling City, Jilin Province. Soil organic matter (SOM), wet aggregate stability and saturated hydraulic conductivity (Ks) were also analyzed. Total SOM was not significantly affected by tillage systems, but fresher SOM was observed in the surface layer under NT. The aggregates under NT showed different hierarchies in the form of crumbs, and the mean weight diameter (MWD) of NT was significant higher than that of CT in the surface layer. Platy and blocky aggregates were frequently observed in the lower layers under CT practice. The compound pore structure with intertwined intra-and interaggregates pores under NT was well developed in a layer from 0-5 cm to 20-25 cm. While under CT system, more inter-aggregate pores and fewer intraaggregate pores were observed, and planes and channels were frequently found in the 20-25 cm layer, where macroporosity decreased significantly and a plow pan was evident. The Ks values of NT were significantly lower at 0-5 cm but significantly higher at 20-25 cm compared with CT, which showed the same trend with macroporosity. These results confirmed that long-term CT practice fragmented the tillage layer soil and compacted the lower layer soil and formed a plow pan. While long-term NT practice in the black soil region favored soil aggregation and a stable porous soil structure was formed, which are important to the water infiltration and prevent soil erosion. 展开更多
关键词 中国东北地区 土壤结构 黑土区 东北部地区 免耕 微分析 CT系统 管理
下载PDF
Identifying soil structure along headwater hillslopes using ground penetrating radar based technique 被引量:5
9
作者 HAN Xiao-le LIU Jin-tao +1 位作者 ZHANG Jun ZHANG Zhi-cai 《Journal of Mountain Science》 SCIE CSCD 2016年第3期405-415,共11页
Soil structure plays an important role in understanding soil attributes as well as hydrological processes. Effective method to obtain high quality soil map is therefore important for both soil science research and soi... Soil structure plays an important role in understanding soil attributes as well as hydrological processes. Effective method to obtain high quality soil map is therefore important for both soil science research and soil work ability improvement. However,traditional method such as digging soil pits is destructive and time-consuming. In this study, the structure of headwater hillslopes from Hemuqiao catchment(Taihu Basin, China) have been analyzed both by indirect(ground penetrating radar, GPR) and direct(excavation or soil auger) methods. Four transects at different locations of hillslopes in the catchment were selected for GPR survey. Three of them(#1, #2, and #3) were excavated to obtain fullscale soil information for interpreting radar images.We found that the most distinct boundary that can be detected by GPR is the boundary between soil and underlain bedrock. In some cases(e.g., 8-17 m in transect #2), in which the in situ soil was scarcely affected by colluvial process, different soil layers can be identified. This identification process utilized the sensitive of GPR to capture abrupt changes of soil characteristics in layer boundaries, e.g., surface organic layer(layer #1) and bamboo roots layer(layer#2, contain stone fragments), illuvial deposits layer(layer #3) and regolith layer(layer #4). However, in areas where stone fragments were irregularly distributed in the soil profile(highly affected bycolluvial and/or fluvial process), it was possible to distinguish which part contains more stone fragments in soil profile on the basis of reflection density(transect #3). Transect #4(unexcavated) was used to justify the GPR method for soil survey based on experiences from former transects. After that, O horizon thickness was compared by a hand auger.This work has demonstrated that GPR images can be of a potential data source for hydrological predictions. 展开更多
关键词 探地雷达技术 土壤结构 坡面 上游 探地雷达检测 雷达图像 水文过程 土壤属性
下载PDF
Soil Structure Interaction Effects on Pushover Analysis of Short Span RC Bridges 被引量:1
10
作者 Islam M. Ezz El-Arab 《Open Journal of Civil Engineering》 2017年第3期348-361,共14页
A three dimensional finite element of nonlinear pushover analysis for short span Reinforced Concrete (RC) bridge with circular piers cross section is modeling to present effects of soil structural interaction (SSI). S... A three dimensional finite element of nonlinear pushover analysis for short span Reinforced Concrete (RC) bridge with circular piers cross section is modeling to present effects of soil structural interaction (SSI). Structural elements models are including linear foundation springs modeling, and nonlinear RC piers modeling. The paper succeeded to present the SSI effects of nonlinear pushover analysis of short spans RC bridges to determine the significant effects on dynamic characteristics and displacement capacity of short span RC bridges performance;that is increasing within range 11% to 20% compared to baseline pushover analysis of bridge without SSI effects. Results show the bridge stiffness decreases due to SSI effects on the bridge support for more flexible soils types that generates large displacement, with corresponding less base shear in bridge piers and footings by average percentage 12% and 18%, which is important for structural evaluation for new bridge construction and also, for strengthening and repair works evaluation of existing bridges. 展开更多
关键词 soil structure INTERACTION PUSHOVER Analysis RC BRIDGE Nonlinear
下载PDF
Evapotranspiration―Soil Structure Relationship in West Marshes of France
11
作者 R. T. Radimy P. Dudoignon +1 位作者 J. M. Hillaireau L. Caner 《Journal of Water Resource and Protection》 2014年第9期821-840,共20页
The soil potentials, facing to the crop fields, are commonly estimated through the calculation of their available water capacity based on the ETP or ETM estimation. The present work introduces the comparison between t... The soil potentials, facing to the crop fields, are commonly estimated through the calculation of their available water capacity based on the ETP or ETM estimation. The present work introduces the comparison between theoretical and real available water capacity profiles calculated down to 1.00 m depth. The evapotranspiration data are used to the calculation of ETP in an undrained grassland and ETM in two drained corn fields located in the French Atlantic marshlands. The studied soils have acquired specific properties in response to the reclaiming of the clay;dominant primary sediments began since the Middle Age and late drainage works. The theoretical and real available water capacity profiles are calculated from the ETP and ETM data and from the soil moisture profiles respectively, from June to October 2013. The theoretical and real profiles are confronted to the tensiometric pressure recording at 30, 60 and 90 cm. The tensiometric pressure behavior and associated premature disconnections of the tensiometric plugs are explained thanks to the soil structure-hydromechanical property relationships: i.e. from ductile state in depth to brittle state in surface. The vertical evolutions of the real profiles are explained facing to the plant growing, pluviometry and water nape levels. Their behavior and their shifts from the linear “theoretical” ETP or ETM profiles clearly show the advance of the desiccation front and consequently the kinetics of water consumption by plants. This simple method of calculation and comparison between the real and theoretical ETM or ETP profiles allows the quantitative discussion: 1) on the role of the soil microstructure behavior on the root growing and, 2) on the realism of the crop coefficient taken into account in the ETP or ETM estimation. In these coastal marsh fields, it also argues on the difficulty of management facing to the water and/or salt stresses. 展开更多
关键词 EVAPOTRANSPIRATION Available Water Capacity soil structure CLAY DOMINANT soils Plant soil Interaction
下载PDF
Independent and Combined Effect of Some Soil Tillage Systems on Nitrogen and Carbon Concentration in Soil Structural Units of Haplic Chernozems
12
作者 Margarita Nankova Peter Yankov 《Journal of Agricultural Science and Technology(B)》 2015年第7期465-476,共12页
关键词 土壤耕作制度 耕作系统 结构单元 碳浓度 氮浓度 黑钙土 独立和 正相关关系
下载PDF
Dynamic Analysis of Soil Structure Interaction Effect on Multi Story RC Frame
13
作者 Hailu Getachew Kabtamu Gang Peng Denghong Chen 《Open Journal of Civil Engineering》 2018年第4期426-446,共21页
In this study dynamic analysis of Soil Structure Interaction (SSI) effect on multi story reinforced concrete (RC) frame founded on soft soil (flexible base) is made and compared with fixed base. Two model 2D RC frames... In this study dynamic analysis of Soil Structure Interaction (SSI) effect on multi story reinforced concrete (RC) frame founded on soft soil (flexible base) is made and compared with fixed base. Two model 2D RC frames with 7 and 12 story are selected for analysis. Winkler Spring and half space direct method models are used for flexible base for the frames founded on two types of soft soils with shear velocity Vs < 150 m/s Asper Seismic Codes of Chinese GB50011-2010 Soil IV and Ethiopian ES8-2015 soil D. The frames are subjected to strong ground motion matched to response spectrums of soft soil of Chinese GB50011-2010 and Ethiopian ES8-2015 for linear time history analysis. The dynamic analysis result shows Spring and Fixed base mass participation 90% reaches in 2 or 3 modes but in direct method 11 to 30 modes for story 12 and 7 respectively. However, both flexible base models have bigger fundamental period of vibration and inter story drift but smaller base shear than fixed base. In addition, within the flexible base models the inter-story drift, second order effect (P-Δ) and Story shear distribution are different along the height of frames. The spring model shows larger Story drift and second order effect (P-Δ) at the bottom of Story for both soft soils types. On the other hand, half space direct method model indicates value reverse to spring model;it gives bigger Story drift and P-Δ effect in the top stories than fixed base. Finally, this study concludes that base shear reduction due to SSI may not be always beneficial. Because the gravity load is constant in both fixed and flexible bases that cause bigger P-Δ effect at the bottom stories due to increase, inter story drift and decrease story shear in flexible base. 展开更多
关键词 soil structure Interaction Dynamic Analysis Fixed BASE Flexible BASE Direct Method WINKLER Spring PERIOD of Vibration STORY SHEAR STORY DRIFT and P-Δ Effect
下载PDF
Influence of Soil-Structure Interaction Models on the Dynamic Responses of An Offshore Wind Turbine Under Environmental Loads
14
作者 TANG Hong-ming YUE Min-nan +3 位作者 YAN Yang-tian LI Zhi-hao LI Chun NIU Kai-lun 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期218-231,共14页
Offshore wind turbines(OWTs) suffer wind, wave and earthquake loads. The investigation of OWTs' dynamic response under environmental loads is essential for structural safety assessment. The soil-structure interact... Offshore wind turbines(OWTs) suffer wind, wave and earthquake loads. The investigation of OWTs' dynamic response under environmental loads is essential for structural safety assessment. The soil-structure interaction(SSI)significantly affects the responses of OWT under environmental loads. However, there is few systematic research about the difference in the dynamic response of different SSI models under environmental loads. In order to solve the problem, the OWT is modeled by shell element, and several SSI models are built. The wind, wave and earthquake loads are taken into account. Moreover, the dynamic response, fatigue and buckling analysis are performed by ANSYS. The results indicate that SSI cannot be ignored in the dynamic response of the OWT under wind and wave loads. The SSI can decrease the displacement response of the OWT by 19% under wind and wave loads and reduce the fatigue damage of the pile. Multi-layer SSI can strongly influence the OWT's dynamic response under wind and wave loads or earthquake-only load. The vertical earthquake load increases the dynamic response in three directions.Besides, in order to simulate real environment, multi-layer SSI, soil damping and vertical SSI must be considered to evaluate the displacement response of the OWT under wind, wave and earthquake loads. The earthquake and gravity loads can cause more obvious response of the OWT than that of only wind and wave loads. The top and bottom of the tower are prone to occur buckling. 展开更多
关键词 OWT soil structure interaction EARTHQUAKE dynamic analysis structural damage
下载PDF
Strength Model of Soda Residue Soil Considering Consolidation Stress and Structural Influence
15
作者 GONG Xiaolong WANG Yuanzhan CHEN Tong 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1216-1226,共11页
Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and s... Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and saves material costs for foundation engineering.The strength characteristics of soda residue soil(SRS)under different consolidation conditions are the key points to be solved in the engineering application of SRS.Triaxial compression tests were performed on the undisturbed SRS of Tianjin Port.The shear properties of SRS under different consolidation conditions were then discussed.Meanwhile,a structural strength model(SSM)based on Mohr-Coulomb theory was proposed.SSM reflects the influence of soil structure on undrained strength(Cu)and divides the Cu into the following two parts:friction strength(C_(uf))and original structural strength(C_(u0)).C_(uf)characterizes the magnitude of friction between soil particles,which is related to the consolidation stress.Meanwhile,C_(u0)represents the structural effect on soil strength,which is related to the soil deposition and consolidation processes.SSM was validated by the test data of undisturbed soils.Results reveal that the undisturbed soil generally had a certain C_(u0).Therefore,the SRS strength model was established by combining the experimental law of SRS with SSM.Error analysis shows that the SRS strength model can effectively predict the Cu of undisturbed SRS in Tianjin Port under different consolidation conditions. 展开更多
关键词 soda residue soil triaxial test strength model soil structure consolidation stress
下载PDF
A Modified Model for Soil–Structure Interface Considering Random Damage of Mesoscopic Contact Elements
16
作者 KE Li-jun GAO Yu-feng +2 位作者 ZHAO Zi-hao LI Da-yong JI Jian 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期807-818,共12页
The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic ... The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces. 展开更多
关键词 soilstructure interface statistical damage model mesoscopic element Weibull function “semi-softening”characteristic point
下载PDF
Dynamic Response of A Group of Cylindrical Storage Tanks with Baffles Considering the Effect of Soil Foundation
17
作者 SUN Ying WANG Jia-dong +3 位作者 HUO Rui-li ZHOU Ding GU Zhen-yuan QIAN Wang-ping 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期129-143,共15页
The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdoma... The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter. 展开更多
关键词 cylindrical tanks multiple annular baffles equivalent analytical model soilstructure interaction subdomain method dynamic response
下载PDF
Seismic Response of Adjacent Structure to Inter-Story Isolated Structure
18
作者 Bingxing Ma Dewen Liu +3 位作者 Zhuoxin Yang Jiayu Zhou Yong Ding Tao Ban 《World Journal of Engineering and Technology》 2024年第1期92-102,共11页
Currently, land resources are becoming more and more constrained and structures are getting closer to each other. To investigate the seismic response of inter-story isolated structure to adjacent structure, models con... Currently, land resources are becoming more and more constrained and structures are getting closer to each other. To investigate the seismic response of inter-story isolated structure to adjacent structure, models considering no soil-structure interaction (SSI), considering soil-structure interaction (SSI), and considering structure-soil-structure interaction (SSSI) were established. Nonlinear seismic response comparative analysis was conducted by varying the spacing between adjacent structure and inter-story isolated structure, as well as the weight of adjacent structure, under different earthquake inputs, in order to obtain the structural response characteristics. The results indicate that the inter-story drift and inter-story shear of the inter-story isolated structure without considering SSI are smaller than those considering SSI and SSSI. The inter-story drift and inter-story shear of the inter-story isolated structure considering SSSI are further affected compared to that of the inter-story isolated structure considering only SSI. As the spacing between adjacent structure and inter-story isolated structure increases, the influence of adjacent structure on inter-story isolated structure decreases. The variation in the spacing between the two structures has a negligible effect on the isolation layer of the inter-story isolated structure. With the increase in the weight of adjacent structure, the influence of adjacent structure on inter-story isolated structure becomes more significant. The increasing weight of adjacent structure has an increasing effect on the Isolation layer of the inter-story isolated structure. 展开更多
关键词 soil-structure Interaction (SSI) structure-soil-structure Interaction (SSSI) In-ter-Story Isolation Adjacent structure
下载PDF
Fundamental Study on Response Properties of Structures Constructed on Lunar Regolith
19
作者 Yuji Miyamoto Takaharu Nakano Toshio Kobayashi 《Open Journal of Earthquake Research》 2024年第1期27-40,共14页
The Artemis Program, for constructing the lunar base, is in progress. How to design and construct architectural and civil engineering structures in the lunar environment has become an important issue. The lunar surfac... The Artemis Program, for constructing the lunar base, is in progress. How to design and construct architectural and civil engineering structures in the lunar environment has become an important issue. The lunar surface is covered with soft sand, called regolith, and it is required to protect lunar bases and structures, as well as internal precision equipment, against vibrational disturbances such as moonquakes and meteorite collisions. Therefore, in this study, the static and cyclic triaxial compression tests of the regolith simulant were conducted. The reference strain and equivalent damping factor of the regolith simulant were smaller compared to sandy soil on Earth. In addition, a shaking table test using model specimens was conducted on the response properties of regolith ground alone and structures set on regolith ground. The buried foundation and pile foundation notably suppressed the horizontal response attributed to the rocking component compared to a direct foundation. 展开更多
关键词 Lunar Development REGOLITH soil-structure Interaction Triaxial Compression Test Shaking Table Test
下载PDF
A Review of Biochemical Processes and Techniques for Soil Stabilization and Resilience
20
作者 Jonathan A. Metuge Zachary N. Senwo 《Advances in Biological Chemistry》 CAS 2024年第1期40-54,共15页
Biochemical, chemical, and mechanical, techniques have been employed to enhance soil resilience for decades. While the use of mechanical techniques requires transporting huge amounts of soil materials, the cement used... Biochemical, chemical, and mechanical, techniques have been employed to enhance soil resilience for decades. While the use of mechanical techniques requires transporting huge amounts of soil materials, the cement used in chemical techniques may lead to increase atmospheric carbon dioxide. Numerous studies indicate that biochemical techniques may be less expensive, cost effective, and environmentally friendly. Biopolymers and enzymes derived from microorganisms have been suggested as biological enhancers in strengthening and fortifying soils used for earthen structures. Lime and other treatment techniques used as biobased materials have been shown to be less effective for stabilizing soils. Here, we review biochemical processes and techniques involved in the interactions of soil enzymes, microorganisms, microbial extracellular polymeric substances, and other biopolymers with soil particles, and the challenges and strategies of their use as biobased materials for stabilizing soils. This review provides their impacts on various soil properties and the growth potentials of agricultural crops. . 展开更多
关键词 BIOCHEMICAL Earthen structures soil Resilience Biopolymers soil Enzymes AGRICULTURE MICROORGANISMS Extracellular Polymeric Substances
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部