期刊文献+

二次检索

题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息

年份

学科

共找到86篇文章
< 1 2 5 >
每页显示 20 50 100
Material Properties and Tensile Behaviors of Polypropylene Geogrid and Geonet for Reinforcement of Soil Structures
1
作者 张季如 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第3期83-86,共4页
The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic bala... The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic balance and aperture sizes of the geonets were exactly measured using a computer.Laboratory tests were performed using a small tensile machine capable of monitoring tensile force and displacement.Tensile failure behaviors were described,and tensile index properties such as tensile strength,maximum tensile strain,tensile forces corresponding to different strains in the geogrids and gronets were obtained.The characterization of these indexes is discussed. 展开更多
关键词 material property tensile behavior POLYPROPYLENE GEOGRID GEONET reinforcement of soil structure
下载PDF
Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm 被引量:1
2
作者 Jianjun Zi Tao Liu +3 位作者 Wei Zhang Xiaohua Pan Hu Ji Honghu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4285-4299,共15页
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta... The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm. 展开更多
关键词 soil structure MICRO-CT Multi-level thresholding MICP Genetic algorithm(GA)
下载PDF
Influence of soil to structure stiffness on the accuracy of the pushover method for underground structures
3
作者 Qi Wu Yifeng Zhou Jiawei Jiang 《Earthquake Research Advances》 CSCD 2022年第4期22-27,共6页
The pushover method for underground structures is a seismic analysis method featured by high calculation accuracy and a simple implementation process.The method has been widely used in seismic design and other related... The pushover method for underground structures is a seismic analysis method featured by high calculation accuracy and a simple implementation process.The method has been widely used in seismic design and other related scientific research;however,the influence of different soil-structure flexibility ratios on the accuracy of this method is still not well understood.In this study,we select the cross-section structures beneath the Daikai subway station as the research object and establish 12 finite element analysis models with different soil-structure flexibility ratios using ABAQUS.All models are computed by the dynamic time-history method or the pushover method.Furthermore,the dynamic time-history solution result is taken as the standard solution,and the precision and application of the pushover analysis method are discussed based on the parameters of peak interlayer displacement and peak internal force of the middle column section.The results show that the soil-structure flexibility ratio has a significant influence on the calculation accuracy of the pushover method,and the calculation accuracy of this method is the most ideal when the soil-structure flexibility is equal to 1.The research results can provide significant references for the seismic design of underground structures or the improvement of simplified seismic analysis methods. 展开更多
关键词 Underground structure PUSHOVER soil to structure flexibility ACCURACY
下载PDF
How elevation and soil properties affect plant distribution patterns and species diversity in the Mediterranean mountain ecosystem of Al-Jabal Al- Akhdar, Libya
4
作者 ABD EL-GHANI Monier AL BORKI Abd El-Nasser 《Journal of Mountain Science》 SCIE CSCD 2024年第11期3683-3701,共19页
The objectives of this study were to assess distribution patterns of plant species richness,plant diversity and vegetation structure in relation to environmental factors along elevation gradient in Al-Jabal Al-Akhdar,... The objectives of this study were to assess distribution patterns of plant species richness,plant diversity and vegetation structure in relation to environmental factors along elevation gradient in Al-Jabal Al-Akhdar,Libya.For each species,its growth form,chorological affinities,degree of occurrence,endemism status and originality were provided.A total of 534 taxa were generated from 70 families of the flowering plants,and 3 of the non-flowering plants were identified.The native flora of the study area was counted for 80.2%of the total indigenous taxa(465).The hump-shaped pattern of plant species richness was obtained,with the highest species richness at the mid-elevations,and both ends of the gradient have the lowest.The annuals(300 species,56.2%)and non-succulent perennial herbs(165 species,30.9%)were the most dominant growth forms of the total species composition.Along the elevation gradient,Asteraceae,Fabaceae,Poaceae,Lamiaceae and Apiaceae were the dominant families with the highest numbers of species.This investigation recorded 31 endemic taxa,comprising 25 dicots and 6 monocots,primarily of Mediterranean origin,with most belonging to the Asteraceae and Lamiaceae families.Mediterranean chorotype was the dominant,whether pure(mono-),or combined with one(bi-and pluri-regional)or more(pluri-regional).Application of cluster analysis on the vegetation data yielded four cluster groups;each was linked to an elevation level.It emphasized the importance of establishing conservation strategies to minimize human disturbance and safeguard relic habitats of Juniperus phoenicea L.at its southern distribution limits in Africa,underlining the proactive management required for species preservation.The application of Redundancy Analysis revealed that Shannon diversity index(H'),pH and Fe were the determinant soil factor in the mid-elevation levels(L2 and L3)whereas altitude,fine sand,HCO3,OM,and soil contents of Na,SO4 and Cl for the extreme levels(L1 and L4). 展开更多
关键词 Altitudinal gradient Distribution patterns Floristic diversity Growth forms Libya soil structure Vegetation analysis
下载PDF
Prediction of constrained modulus for granular soil using 3D discrete element method and convolutional neural networks
5
作者 Tongwei Zhang Shuang Li +1 位作者 Huanzhi Yang Fanyu Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4769-4781,共13页
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ... To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages. 展开更多
关键词 soil structure Constrained modulus Discrete element model(DEM) Convolutional neural networks(CNNs) Evaluation of error
下载PDF
Dynamic Response of A Group of Cylindrical Storage Tanks with Baffles Considering the Effect of Soil Foundation
6
作者 SUN Ying WANG Jia-dong +3 位作者 HUO Rui-li ZHOU Ding GU Zhen-yuan QIAN Wang-ping 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期129-143,共15页
The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdoma... The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter. 展开更多
关键词 cylindrical tanks multiple annular baffles equivalent analytical model soil−structure interaction subdomain method dynamic response
下载PDF
Impact of Continuous Chinese Fir Monoculture on Soil 被引量:14
7
作者 YANGYu-Sheng LIUChun-Jiang: +2 位作者 W.KUTSCH CHENGuang-Shuit YUXin-Tuo 《Pedosphere》 SCIE CAS CSCD 2004年第1期117-124,共8页
Soil properties were investigated in sites where three succeeding generationsof Chinese fir (Gunning-hamia lanceolata, (Lambert) Hooker) in Nanping, Fujian, China, werecultivated in order to show the impact of a repea... Soil properties were investigated in sites where three succeeding generationsof Chinese fir (Gunning-hamia lanceolata, (Lambert) Hooker) in Nanping, Fujian, China, werecultivated in order to show the impact of a repeated monoculture on site productivity. Compared withthe first generation (FG) stand the soil structure deteriorated in the second generation (SG) andthe third generation (TG) stands. For instance, the destruction rate of the peds increased by 55%-115% in the SG and the TG stands compared to the FG stand. Soil nutrient storage and nutrientavailability also decreased in the SG and the TG stands. For surface soils of 0-20 cm, the organicmatter content, total N and P, and available N and P decreased by 3%-20% relative to those in the FGstand. For many soil parameters, the differences between the FG stand and the SG and the TG standswere statistically significant (LSD test, P < 0.05). Furthermore, with each succeeding generation ofChinese fir, the total number of soil microbes declined, the soil enzyme activity weakened, and thesoil biological activity decreased. In order to maintain sustainable site productivity, newsilvicultural practices need to be developed for management of Chinese fir plantations. 展开更多
关键词 chinese fir nutrient availability repeated monoculture soil biochemistry soil structure
下载PDF
Soil Fertility in Agroforestry System of Chinese Fir and Villous Amomum in Subtropical China 被引量:14
8
作者 YANG YUSHENG, CHEN GUANGSHUI and YU XINTUO Fujian Agriculture and Forestry University, Nanping 353001 (China) 《Pedosphere》 SCIE CAS CSCD 2001年第4期341-348,共8页
A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey... A trial of interplanting and non-interplanting villous amomum (Amomum villosum Lour.) under the canopy of Chinese fir (Cunninghamia lanceolata Hook.) at age 22 was established in Sanming, Fujian of China, and a survey on soil fertility was carried out 10 years after its establishment. Compared with the control (non-interplanting), the properties of soil humus in agroforestry system were ameliorated, with a higher level of humification and resynthesis of organic detritus. The soil microbial population and enzymatic activities were both higher under the influence of villous amomum. Both the nutrient supplying and nutrient conserving capacities of the soil were improved. This agroforestry system exhibited an advantage of improved soil fertility as well as an accelerated growth of Chinese fir, it was, therefore, a sustainable management system suited for Chinese fir in South China. 展开更多
关键词 AGROFORESTRY Chinese fir soil biological activity soil humus soil structure
下载PDF
Effect of Root Architecture on Structural Stability and Erodibility of Topsoils during Concentrated Flow in Hilly Loess Plateau 被引量:13
9
作者 LI Qiang LIU Guobin +2 位作者 ZHANG Zheng TUO Dengfeng XU Mingxiang 《Chinese Geographical Science》 SCIE CSCD 2015年第6期757-764,共8页
Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of ... Traditional vegetation techniques for the control of concentrated flow erosion are widely recognized, whereas only a few studies have experimentally investigated the impacts of belowground roots on the erodibility of topsoils in semi-arid areas. To quantify the effects of root architectures on soil erodibility and its relevant structural properties, simulated flow experiments were conducted at six-week intervals from 18 July to 20 October in 2012 in the hilly Loess Plateau. Five treatments were: 1) bare(control), 2) purple alfalfa(Medicago sativa), representing tap roots(T), 3) switchgrass(Panicum virgatum), representing fibrous roots(F), 4) purple alfalfa and switchgrass, representing both tap and fibrous roots(T + F), and 5) natural recovery(N). For each treatment, soil structural properties and root characteristics were measured at an interval of six weeks. Soil anti-scouribility was calculated. Results showed that grass planting slightly reduced soil bulk density, but increased soil aggregate content by 19.1%, 10.6%, 28.5%, and 41.2% in the treatments T, F, T + F, and N, respectively. Soil shear strength(cohesion and angle of internal friction(φ)) significantly increased after the grass was planted. As roots grew, soil cohesion increased by 115.2%–135.5%, while soil disintegration rate decreased by 39.0%–58.1% in the 21 th week compared with the recorded value in the 9th week. Meanwhile, root density and root surface area density increased by 64.0%–104.7% and 75.9%–157.1%, respectively. No significant differences in soil anti-scouribility were observed between the treatments of T and F or of T + F and N, but the treatments of T + F and N performed more effectively than T or F treatment alone in retarding concentrated flow. Soil aggregation and root surface-area density explained the observed soil anti-scouribility during concentrated flow well for the different treatments. This result proved that the restoration of natural vegetation might be the most appropriate strategy in soil reinforcement in the hilly Loess Plateau. 展开更多
关键词 fibrous roots tap roots root density soil structural properties soil anti-scouribility hilly Loess Plateau China
下载PDF
Micromorphological Analysis of Soil Structure under No Tillage Management in the Black Soil Zone of Northeast China 被引量:7
10
作者 ZHOU Hu LI Baoguo LU Yizhong 《Journal of Mountain Science》 SCIE CSCD 2009年第2期173-180,共8页
The structure of the "black soil" in Northeast China has been greatly deteriorated by long-term intensive conventional mouldboard plow tillage (CT) practices. In this study, micro- morphological observation and im... The structure of the "black soil" in Northeast China has been greatly deteriorated by long-term intensive conventional mouldboard plow tillage (CT) practices. In this study, micro- morphological observation and image analysis of soil thin sections were conducted to evaluate the impacts of 21 years (1986-2007) of no tillage (NT) on soil structure as compared to CT in an experiment near Gongzhuling City, Jilin Province. Soil organic matter (SOM), wet aggregate stability and saturated hydraulic conductivity (Ks) were also analyzed. Total SOM was not significantly affected by tillage systems, but fresher SOM was observed in the surface layer under NT. The aggregates under NT showed different hierarchies in the form of crumbs, and the mean weight diameter (MWD) of NT was significant higher than that of CT in the surface layer. Platy and blocky aggregates were frequently observed in the lower layers under CT practice. The compound pore structure with intertwined intra- and inter- aggregates pores under NT was well developed in a layer from 0-5 cm to 20-25 era. While under CT system, more inter-aggregate pores and fewer intra- aggregate pores were observed, and planes and channels were frequently found in the 20-25 cm layer, where maeroporosity decreased significantly and a plow pan was evident. The Ks values of NT weresignificantly lower at o-5 cm but significantly higher at 20-95 cm compared with CT, which showed the same trend with macroporosity. These results confirmed that long-term CT practice fragmented the tillage layer soil and compacted the lower layer soil and formed a plow pan. While long-term NT practice in the black soil region favored soil aggregation and a stable porous soil structure was formed, which are important to the water infiltration and prevent soil erosion. 展开更多
关键词 No tillage soil structure soilmicromorphology image analysis black soil
下载PDF
Effects of seasonal water-level fluctuation on soil pore structure in the Three Gorges Reservoir,China 被引量:9
11
作者 ZHANG Shu-juan TANG Qiang +5 位作者 BAO Yu-hai HE Xiu-bin TIAN Feng-xia LüFa-you WANG Ming-feng Raheel ANJUM 《Journal of Mountain Science》 SCIE CSCD 2018年第10期2192-2206,共15页
Inundation of the Three Gorges Reservoir has created a 30-m water-level fluctuation zone with seasonal hydrological alternations of submergence and exposure, which may greatly affect soil properties and bank stability... Inundation of the Three Gorges Reservoir has created a 30-m water-level fluctuation zone with seasonal hydrological alternations of submergence and exposure, which may greatly affect soil properties and bank stability. The aim of this study was to investigate the response of soil pore structure to seasonal water-level fluctuation in the reservoir, and particularly, the hydrological change of wetting and drying cycles. Soil pore structure was visualized with industrial X-ray computed tomography and digital image analysis techniques. The results showed that soil total porosity(? 100 ?m), total pore number, total throat number, and mean throat surface area increased significantly under wetting and drying cycles. Soil porosity, pore number and throat numberwithin each size class increased in the course of wetting and drying cycles. The coordination number, degree of anisotropy and fractal dimension were indicating an increase. In contrast, the mean shape factor, pore-throat ratio, and Euler-Poincaré number decreased due to wetting and drying cycles. These illustrated that the wetting and drying cycles made soil pore structure become more porous, continuous, heterogeneous and complex. It can thus be deduced that the water-level fluctuation would modify soil porosity, pore size distribution, and pore morphology in the Three Gorges Reservoir, which may have profound implications for soil processes, soil functions, and bank stability. 展开更多
关键词 soil pore structure X-ray computed tomography Image analysis Wetting and drying cycles Water-level fluctuation Three Gorges
下载PDF
Effect of Organic Manure Application on Physical Properties and Humus Characteristics of Paddy Soil 被引量:9
12
作者 DOUSEN CHENEN-FENG 《Pedosphere》 SCIE CAS CSCD 1994年第2期127-135,共9页
Long-term field experiment was established in 1978 on a coastal paddy soil to determine the effect of applicationof pig manure, rice straw and chemical N fertilizer on the physical property and humus characteristics o... Long-term field experiment was established in 1978 on a coastal paddy soil to determine the effect of applicationof pig manure, rice straw and chemical N fertilizer on the physical property and humus characteristics of soil . Resultsshowed that the porosity, the microstructural coefficient, the reactivities of organic C and N, the ΔlogK value, thedegree of oxidation stability, the contents of O-alkyl C and alkyl C, and the ratio of aliphatic C to aromatic C ofhumic acid from soils received organic manure increased, whereas, the ratio of < 10 μm to >10 μm ofmicroaggregates, the humification degree of humus, the degree of organo-mineral complexation, the number-averagemolecular weight, the C/ H ratio. the contents of carboxyl and aromatic C of HAs in them decreased. These resultsindicated that the application of organic manure not only improved the physical property of the paddy soil but alsomade the HA more aliphatic in structure and younger in origin. 展开更多
关键词 humic acid organic manure poddy soil. structural characteristics
下载PDF
A Note on Soil Structure Resistance of Natural Marine Deposits 被引量:4
13
作者 洪振舜 刘松玉 刘志方 《海洋工程:英文版》 EI 2004年第2期321-326,共6页
It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the... It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the theory study and engineering practice of ocean engineering and geotechnical engineering. It is traditionally considered that the resistance of soil structure gradually disappears with increasing stress level when the applied stress is beyond the consolidation yield stress. In this study, however, it is found that this traditional interpretation of the resistance of soil structure can not explain the strength behavior of natural marine deposits with a normally-consolidated stress history. A new interpretation of the resistance of soil structure is proposed based on the strength behavior. In the preyield state, the undrained strength of natural marine deposits is composed of two components: one developed by the applied stress and the other developed by the resistance of soil structure. When the applied stress is beyond the consolidation yield stress, the strength behavior is independent of the resistance of soil structure. 展开更多
关键词 consolidation yield stress marine clays normally-consolidated stress history postyield state resistance of soil structure strength behavior structured soils
下载PDF
The effect of total carbon on microscopic soil properties and implications for crop production 被引量:4
14
作者 Inma LEBRON Milton Earl MCGIFFEN Jr Donald Louis SUAREZ 《Journal of Arid Land》 SCIE 2012年第3期251-259,共9页
Soil structure is a dynamic property affected by physical, chemical, and microbiological processes. Addition of organic matter to soils and the use of different management practices have been reported to impact soil s... Soil structure is a dynamic property affected by physical, chemical, and microbiological processes. Addition of organic matter to soils and the use of different management practices have been reported to impact soil structure and crop production. Moderation in soil temperature and increases in microbial activity and soil water retention are often suggested as reasons for the rise in crop yield when organic matter is added to the soil. Less is known about the direct effect of changes in soil structure on crop production. A field experiment was conducted to study the effect of summer cover crop and in-season management system on soil structure. The experiment was a nested design with summer cover crop as the main plot and management system as the subplot. Summer cover crop treatments included cowpea (Vigna unguiculata L. Walp.) incorporated into the soil in the fall (CI), cowpea used as mulch in the fall (CM), sudangrass (Sorghum vulgare) incorporated into the soil in the fall (S), and dry fallow or bare ground (B). Management systems were organic (ORG) and conventional (CNV) systems. Lettuce (Lactuca sativa L.) and cantaloupes (Cucumis melo L.) were cultivated in rotation in the plots for three consecutive years using the same cover crops and management systems for each plot. Disturbed and undisturbed soil cores were collected at the end of the third year and used for laboratory experiments to measure physical, chemical, and hy- draulic properties. Image analysis was used to quantify soil structure properties using a scanning electron micro- scope on thin sections prepared from the undisturbed soil cores. We found that total soil carbon was correlated with porosity, saturation percentage, and pore roughness. Pore roughness was correlated with crop production in gen- eral and with marketable production in particular. We found that the higher the complexity of the pore space, the more water retained in the soil, which may increase soil water residence and reduce plant water stress. 展开更多
关键词 summer cover crop management systems soil structure properties total carbon
下载PDF
Effect of Pisha sandstone on water infiltration of different soils on the Chinese Loess Plateau 被引量:18
15
作者 MA Wenmei ZHANG Xingchang 《Journal of Arid Land》 SCIE CSCD 2016年第3期331-340,共10页
The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studi... The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area. 展开更多
关键词 Pisha sandstone soil structure saturated hydraulic conductivity water infiltration
下载PDF
Dynamic Finite Element Analysis for Interaction between Two Phase Saturated Soil Foundation and Platform 被引量:2
16
作者 Qian, Lingxi Zhong, Wanxie Zhang, Hongwu 《China Ocean Engineering》 SCIE EI 1993年第1期21-29,共9页
In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, t... In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, the technique of multilevel substructure is used, and the saturated soil analysis is set in the highest level substructure model. Based on these theories a dynamic finite element analysis program DIASS for the analysis of interaction between two phase ocean soil foundation and platform structures has been developed. A numerical example is given here to illustrate the influence of the pore water in soil on the structural response of an ocean platform. 展开更多
关键词 Finite element method Offshore structures Porous materials Production platforms Simulation soil mechanics soil structure interactions Structural analysis Underwater soils
下载PDF
Synergistic combination of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria modulates morpho-physiological characteristics and soil structure in Nitraria tangutorum bobr.Under saline soil conditions 被引量:2
17
作者 Jing Pan CuiHua Huang +5 位作者 Fei Peng Tao Wang Jie Liao ShaoXiu Ma QuanGang You Xian Xue 《Research in Cold and Arid Regions》 CSCD 2022年第6期393-402,共10页
Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activ... Nitraria tangutorum Bobr.,a typical xero-halophyte,can be used for vegetation restoration and reconstruction in arid and semiarid regions affected by salinity.However,global climate change and unreasonable human activity have exacerbated salinization in arid and semi-arid regions,which in turn has led to the growth inhibition of halophytes,including N.tangutorum.Arbuscular mycorrhizal fungi(AMF)and plant growth-promoting rhizobacteria(PGPR)have the potential to improve the salt tolerance of plants and their adaptation to saline soil environments.In this study,the effects of single and combined inoculations of AMF(Glomus mosseae)and PGPR(Bacillus amyloliquefaciens FZB42)on N.tangutorum were evaluated in severe saline soil conditions.The results indicate that AMF and PGPR alone may not adapt well to the real soil environment,and cannot ensure the effect of either growth promotion or salt-tolerance induction on N.tangutorum seedlings.However,the combination of AMF and PGPR significantly promoted mycorrhizal colonization,increased biomass accumulation,improved morphological development,enhanced photosynthetic performance,stomatal adjustment ability,and the exchange of water and gas.Co-inoculation also significantly counteracted the adverse effect of salinity on the soil structure of N.tangutorum seedlings.It is concluded that the effectiveness of microbial inoculation on the salt tolerance of N.tangutorum seedlings depends on the functional compatibility between plants and microorganisms as well as the specific combinations of AMF and PGPR. 展开更多
关键词 Nitraria tangutorum Bobr. Arbuscular mycorrhizal fungi Plant growth-promoting rhizobacteria Morphological development Photosynthesis physiology soil structure
下载PDF
Dynamic Study on Water Stability of Soil Structure and Soil Characteristics of Several Types of Soils in Southwest China 被引量:2
18
作者 SHEN Nan HE Yurong XU Xiangming 《Wuhan University Journal of Natural Sciences》 CAS 2008年第3期336-342,共7页
Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measurin... Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measuring method for water stability of soil structure and conduct the comparative study on the quality of the soil structure. The results indicated that (1) The water stability dynamic characteristic of the soil structure could well reflect the maintaining capability of the soil structure as time goes on. (2) The quality of several soil structures in southwest China was sequenced as follows: Stagnic Anthrosols 〉 Ustic Vertisols 〉 Ustic Ferrosols. (3) The water stability of soil structure is very positively correlated with the capillary porosity and the clay particle (D 〈 0.002 mm) content (Co), but is very negatively correlated with the silt (D is 0.05-0.002 ram) content (Csc), and (4) The dynamic functional equation of the water stability of soil structure in southwest China was established, so that the water stability characteristics of various soil structures could be quantitatively expressed and the quality of different soil structures can be quantitatively compared from each other. 展开更多
关键词 soil structure dynamic water stability soil erosion
下载PDF
Identifying soil structure along headwater hillslopes using ground penetrating radar based technique 被引量:7
19
作者 HAN Xiao-le LIU Jin-tao +1 位作者 ZHANG Jun ZHANG Zhi-cai 《Journal of Mountain Science》 SCIE CSCD 2016年第3期405-415,共11页
Soil structure plays an important role in understanding soil attributes as well as hydrological processes. Effective method to obtain high quality soil map is therefore important for both soil science research and soi... Soil structure plays an important role in understanding soil attributes as well as hydrological processes. Effective method to obtain high quality soil map is therefore important for both soil science research and soil work ability improvement. However,traditional method such as digging soil pits is destructive and time-consuming. In this study, the structure of headwater hillslopes from Hemuqiao catchment(Taihu Basin, China) have been analyzed both by indirect(ground penetrating radar, GPR) and direct(excavation or soil auger) methods. Four transects at different locations of hillslopes in the catchment were selected for GPR survey. Three of them(#1, #2, and #3) were excavated to obtain fullscale soil information for interpreting radar images.We found that the most distinct boundary that can be detected by GPR is the boundary between soil and underlain bedrock. In some cases(e.g., 8-17 m in transect #2), in which the in situ soil was scarcely affected by colluvial process, different soil layers can be identified. This identification process utilized the sensitive of GPR to capture abrupt changes of soil characteristics in layer boundaries, e.g., surface organic layer(layer #1) and bamboo roots layer(layer#2, contain stone fragments), illuvial deposits layer(layer #3) and regolith layer(layer #4). However, in areas where stone fragments were irregularly distributed in the soil profile(highly affected bycolluvial and/or fluvial process), it was possible to distinguish which part contains more stone fragments in soil profile on the basis of reflection density(transect #3). Transect #4(unexcavated) was used to justify the GPR method for soil survey based on experiences from former transects. After that, O horizon thickness was compared by a hand auger.This work has demonstrated that GPR images can be of a potential data source for hydrological predictions. 展开更多
关键词 Ground Penetrating Radar(GPR) Hillslope soil structure
下载PDF
SOIL PILE INTERACTION UNDER STATIC, DYNAMIC AND CYCLIC LATERAL LOADS AND A PROPOSAL OF p-y CURVE FORMULA 被引量:1
20
作者 Gao, Ming Chen, Jinzhen +1 位作者 Zhen, Guofang Fang, Huolang 《China Ocean Engineering》 SCIE EI 1989年第3期259-270,共12页
In this paper, the studies on soil-pile interaction behaviors in saturated sands under static, dynamic and cyclic lateral loads by model testing are described. By comparing with the field test results for piles in sof... In this paper, the studies on soil-pile interaction behaviors in saturated sands under static, dynamic and cyclic lateral loads by model testing are described. By comparing with the field test results for piles in soft sandy clay, a formula of p-y curves based on constitutive relationship of soils applicable for both sandy and soft clays is proposed. Good agreements are obtained in comparison with the field test results performed by other investigators abroad. A p-y hysteresis curve formula based on the modified Masing's doubling criterion is also proposed, and the results are in satisfactory agreement with field test results. 展开更多
关键词 FOUNDATIONS soil Structure Interaction Mathematical Models PILES Loading soilS Structural Analysis Dynamic Response
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部