期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Material Properties and Tensile Behaviors of Polypropylene Geogrid and Geonet for Reinforcement of Soil Structures
1
作者 张季如 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第3期83-86,共4页
The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic bala... The properties and tensile behaviors of polypropylene (PP) geogrids and geonets for reinforcement of soil structures are investigated.Mass per unit area of the geogrids and geonets was weighed using an electronic balance and aperture sizes of the geonets were exactly measured using a computer.Laboratory tests were performed using a small tensile machine capable of monitoring tensile force and displacement.Tensile failure behaviors were described,and tensile index properties such as tensile strength,maximum tensile strain,tensile forces corresponding to different strains in the geogrids and gronets were obtained.The characterization of these indexes is discussed. 展开更多
关键词 material property tensile behavior POLYPROPYLENE GEOGRID GEONET reinforcement of soil structure
下载PDF
Dynamic Response of A Group of Cylindrical Storage Tanks with Baffles Considering the Effect of Soil Foundation
2
作者 SUN Ying WANG Jia-dong +3 位作者 HUO Rui-li ZHOU Ding GU Zhen-yuan QIAN Wang-ping 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期129-143,共15页
The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdoma... The sloshing in a group of rigid cylindrical tanks with baffles and on soil foundation under horizontal excitation is studied analytically.The solutions for the velocity potential are derived out by the liquid subdomain method.Equivalent models with mass-spring oscillators are established to replace continuous fluid.Combined with the least square technique,Chebyshev polynomials are employed to fit horizontal,rocking and horizontal-rocking coupling impedances of soil,respectively.A lumped parameter model for impedance is presented to describe the effects of soil on tank structures.A mechanical model for the soil-foundation-tank-liquid-baffle system with small amount of calculation and high accuracy is proposed using the substructure technique.The analytical solutions are in comparison with data from reported literature and numerical codes to validate the effectiveness and correctness of the model.Detailed dynamic properties and seismic responses of the soil-tank system are given for the baffle number,size and location as well as soil parameter. 展开更多
关键词 cylindrical tanks multiple annular baffles equivalent analytical model soil−structure interaction subdomain method dynamic response
下载PDF
Influence of soil to structure stiffness on the accuracy of the pushover method for underground structures
3
作者 Qi Wu Yifeng Zhou Jiawei Jiang 《Earthquake Research Advances》 CSCD 2022年第4期22-27,共6页
The pushover method for underground structures is a seismic analysis method featured by high calculation accuracy and a simple implementation process.The method has been widely used in seismic design and other related... The pushover method for underground structures is a seismic analysis method featured by high calculation accuracy and a simple implementation process.The method has been widely used in seismic design and other related scientific research;however,the influence of different soil-structure flexibility ratios on the accuracy of this method is still not well understood.In this study,we select the cross-section structures beneath the Daikai subway station as the research object and establish 12 finite element analysis models with different soil-structure flexibility ratios using ABAQUS.All models are computed by the dynamic time-history method or the pushover method.Furthermore,the dynamic time-history solution result is taken as the standard solution,and the precision and application of the pushover analysis method are discussed based on the parameters of peak interlayer displacement and peak internal force of the middle column section.The results show that the soil-structure flexibility ratio has a significant influence on the calculation accuracy of the pushover method,and the calculation accuracy of this method is the most ideal when the soil-structure flexibility is equal to 1.The research results can provide significant references for the seismic design of underground structures or the improvement of simplified seismic analysis methods. 展开更多
关键词 Underground structure PUSHOVER soil to structure flexibility ACCURACY
下载PDF
Influence of Soil-Structure Interaction Models on the Dynamic Responses of An Offshore Wind Turbine Under Environmental Loads
4
作者 TANG Hong-ming YUE Min-nan +3 位作者 YAN Yang-tian LI Zhi-hao LI Chun NIU Kai-lun 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期218-231,共14页
Offshore wind turbines(OWTs) suffer wind, wave and earthquake loads. The investigation of OWTs' dynamic response under environmental loads is essential for structural safety assessment. The soil-structure interact... Offshore wind turbines(OWTs) suffer wind, wave and earthquake loads. The investigation of OWTs' dynamic response under environmental loads is essential for structural safety assessment. The soil-structure interaction(SSI)significantly affects the responses of OWT under environmental loads. However, there is few systematic research about the difference in the dynamic response of different SSI models under environmental loads. In order to solve the problem, the OWT is modeled by shell element, and several SSI models are built. The wind, wave and earthquake loads are taken into account. Moreover, the dynamic response, fatigue and buckling analysis are performed by ANSYS. The results indicate that SSI cannot be ignored in the dynamic response of the OWT under wind and wave loads. The SSI can decrease the displacement response of the OWT by 19% under wind and wave loads and reduce the fatigue damage of the pile. Multi-layer SSI can strongly influence the OWT's dynamic response under wind and wave loads or earthquake-only load. The vertical earthquake load increases the dynamic response in three directions.Besides, in order to simulate real environment, multi-layer SSI, soil damping and vertical SSI must be considered to evaluate the displacement response of the OWT under wind, wave and earthquake loads. The earthquake and gravity loads can cause more obvious response of the OWT than that of only wind and wave loads. The top and bottom of the tower are prone to occur buckling. 展开更多
关键词 OWT soil structure interaction EARTHQUAKE dynamic analysis structural damage
下载PDF
Strength Model of Soda Residue Soil Considering Consolidation Stress and Structural Influence
5
作者 GONG Xiaolong WANG Yuanzhan CHEN Tong 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1216-1226,共11页
Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and s... Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and saves material costs for foundation engineering.The strength characteristics of soda residue soil(SRS)under different consolidation conditions are the key points to be solved in the engineering application of SRS.Triaxial compression tests were performed on the undisturbed SRS of Tianjin Port.The shear properties of SRS under different consolidation conditions were then discussed.Meanwhile,a structural strength model(SSM)based on Mohr-Coulomb theory was proposed.SSM reflects the influence of soil structure on undrained strength(Cu)and divides the Cu into the following two parts:friction strength(C_(uf))and original structural strength(C_(u0)).C_(uf)characterizes the magnitude of friction between soil particles,which is related to the consolidation stress.Meanwhile,C_(u0)represents the structural effect on soil strength,which is related to the soil deposition and consolidation processes.SSM was validated by the test data of undisturbed soils.Results reveal that the undisturbed soil generally had a certain C_(u0).Therefore,the SRS strength model was established by combining the experimental law of SRS with SSM.Error analysis shows that the SRS strength model can effectively predict the Cu of undisturbed SRS in Tianjin Port under different consolidation conditions. 展开更多
关键词 soda residue soil triaxial test strength model soil structure consolidation stress
下载PDF
A Modified Model for Soil–Structure Interface Considering Random Damage of Mesoscopic Contact Elements
6
作者 KE Li-jun GAO Yu-feng +2 位作者 ZHAO Zi-hao LI Da-yong JI Jian 《China Ocean Engineering》 SCIE EI CSCD 2023年第5期807-818,共12页
The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic ... The interaction between soil and marine structures like submarine pipeline/pipe pile/suction caisson is a complicated geotechnical mechanism process.In this study,the interface is discretized into multiple mesoscopic contact elements that are damaged randomly throughout the shearing process due to the natural heterogeneity.The evolution equation of damage variable is developed based on the Weibull function,which is able to cover a rather wide range of distribution shapes by only two parameters,making it applicable for varying scenarios.Accordingly,a statistical damage model is established by incorporating Mohr–Coulomb strength criterion,in which the interfacial residual strength is considered whereby the strain softening behavior can be described.A concept of“semi-softening”characteristic point on shear stress–displacement curve is proposed for effectively modeling the evolution of strain softening.Finally,a series of ring shear tests of the interfaces between fine sea sand and smooth/rough steel surfaces are conducted.The predicted results using the proposed model are compared with experimental data of this study as well as some results from existing literature,indicating that the model has a good performance in modeling the progressive failure and strain softening behavior for various types of soil–structure interfaces. 展开更多
关键词 soil–structure interface statistical damage model mesoscopic element Weibull function “semi-softening”characteristic point
下载PDF
Phosphorus Fertilizer Effects on Near-Surface Soil Aggregation in Furrow-Irrigated Rice on a Silt-Loam Soil
7
作者 Jonathan B. Brye Diego Della Lunga +2 位作者 Kristofor R. Brye Chandler Arel Shane Ylagan 《Agricultural Sciences》 2023年第6期819-842,共24页
Well-aggregated soil has been shown to improve soil infiltration and reduce runoff and soil erosion, making well-aggregated soil important for productive, sustainable agriculture. One factor that may influence near-su... Well-aggregated soil has been shown to improve soil infiltration and reduce runoff and soil erosion, making well-aggregated soil important for productive, sustainable agriculture. One factor that may influence near-surface soil aggregate stability is fertilizer application. Rapid dissolution of fertilizers, which are mostly salts, can potentially disperse clays and destabilize aggregates. The objective of this study was to evaluate the potential effect of various fertilizer-phosphorus (P) and -nitrogen (N) sources [i.e., triple superphosphate (TSP), monoammonium phosphate (MAP), chemically precipitated struvite (CPST), electrochemically precipitated struvite (ECST), environmentally smart nitrogen (ESN)] and soil depth on water-stable aggregates (WSA) in furrow-irrigated rice on a silt-loam soil (Typic Albaqualf). Total WSA (TWSA) concentration was unaffected (P > 0.05) by fertilizer treatment or soil depth, while WSA concentration was numerically largest (P ∙g<sup>-1</sup>), which did not differ from CPST, ECST, and ESN in the 0 - 5 cm depth or the unamended control in the 0 - 5 and 5 - 10 cm depths, and was at least 1.7 times larger than ESN in the 5 - 10 cm depth (0.03 g∙g<sup>-1</sup>). Results indicated that WSA concentration among non-struvite fertilizer-P sources was generally similar to that from the struvite fertilizer materials. Principal component analysis determined that 32% of the variation of TWSA was mainly explained by changes in soil bulk density, pH, and electrical conductivity. Long-term, continual annual application of fertilizer-P and N could negatively impact soil aggregate stability, soil structure, and potentially erosion. 展开更多
关键词 ARKANSAS Rice Production Salt Index soil Aggregate Stability soil Structure STRUVITE
下载PDF
A Note on Soil Structure Resistance of Natural Marine Deposits 被引量:4
8
作者 洪振舜 刘松玉 刘志方 《海洋工程:英文版》 EI 2004年第2期321-326,共6页
It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the... It has been well documented that natural normally-consolidated marine soils are generally subjected to the effects of soil structure. The interpretation of the resistance of soil structure is an important issue in the theory study and engineering practice of ocean engineering and geotechnical engineering. It is traditionally considered that the resistance of soil structure gradually disappears with increasing stress level when the applied stress is beyond the consolidation yield stress. In this study, however, it is found that this traditional interpretation of the resistance of soil structure can not explain the strength behavior of natural marine deposits with a normally-consolidated stress history. A new interpretation of the resistance of soil structure is proposed based on the strength behavior. In the preyield state, the undrained strength of natural marine deposits is composed of two components: one developed by the applied stress and the other developed by the resistance of soil structure. When the applied stress is beyond the consolidation yield stress, the strength behavior is independent of the resistance of soil structure. 展开更多
关键词 consolidation yield stress marine clays normally-consolidated stress history postyield state resistance of soil structure strength behavior structured soils
下载PDF
The effect of total carbon on microscopic soil properties and implications for crop production 被引量:4
9
作者 Inma LEBRON Milton Earl MCGIFFEN Jr Donald Louis SUAREZ 《Journal of Arid Land》 SCIE 2012年第3期251-259,共9页
Soil structure is a dynamic property affected by physical, chemical, and microbiological processes. Addition of organic matter to soils and the use of different management practices have been reported to impact soil s... Soil structure is a dynamic property affected by physical, chemical, and microbiological processes. Addition of organic matter to soils and the use of different management practices have been reported to impact soil structure and crop production. Moderation in soil temperature and increases in microbial activity and soil water retention are often suggested as reasons for the rise in crop yield when organic matter is added to the soil. Less is known about the direct effect of changes in soil structure on crop production. A field experiment was conducted to study the effect of summer cover crop and in-season management system on soil structure. The experiment was a nested design with summer cover crop as the main plot and management system as the subplot. Summer cover crop treatments included cowpea (Vigna unguiculata L. Walp.) incorporated into the soil in the fall (CI), cowpea used as mulch in the fall (CM), sudangrass (Sorghum vulgare) incorporated into the soil in the fall (S), and dry fallow or bare ground (B). Management systems were organic (ORG) and conventional (CNV) systems. Lettuce (Lactuca sativa L.) and cantaloupes (Cucumis melo L.) were cultivated in rotation in the plots for three consecutive years using the same cover crops and management systems for each plot. Disturbed and undisturbed soil cores were collected at the end of the third year and used for laboratory experiments to measure physical, chemical, and hy- draulic properties. Image analysis was used to quantify soil structure properties using a scanning electron micro- scope on thin sections prepared from the undisturbed soil cores. We found that total soil carbon was correlated with porosity, saturation percentage, and pore roughness. Pore roughness was correlated with crop production in gen- eral and with marketable production in particular. We found that the higher the complexity of the pore space, the more water retained in the soil, which may increase soil water residence and reduce plant water stress. 展开更多
关键词 summer cover crop management systems soil structure properties total carbon
下载PDF
Effect of Pisha sandstone on water infiltration of different soils on the Chinese Loess Plateau 被引量:18
10
作者 MA Wenmei ZHANG Xingchang 《Journal of Arid Land》 SCIE CSCD 2016年第3期331-340,共10页
The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studi... The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area. 展开更多
关键词 Pisha sandstone soil structure saturated hydraulic conductivity water infiltration
下载PDF
Dynamic Finite Element Analysis for Interaction between Two Phase Saturated Soil Foundation and Platform 被引量:2
11
作者 Qian, Lingxi Zhong, Wanxie Zhang, Hongwu 《China Ocean Engineering》 SCIE EI 1993年第1期21-29,共9页
In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, t... In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, the technique of multilevel substructure is used, and the saturated soil analysis is set in the highest level substructure model. Based on these theories a dynamic finite element analysis program DIASS for the analysis of interaction between two phase ocean soil foundation and platform structures has been developed. A numerical example is given here to illustrate the influence of the pore water in soil on the structural response of an ocean platform. 展开更多
关键词 Finite element method Offshore structures Porous materials Production platforms Simulation soil mechanics soil structure interactions Structural analysis Underwater soils
下载PDF
Dynamic Study on Water Stability of Soil Structure and Soil Characteristics of Several Types of Soils in Southwest China 被引量:2
12
作者 SHEN Nan HE Yurong XU Xiangming 《Wuhan University Journal of Natural Sciences》 CAS 2008年第3期336-342,共7页
Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measurin... Three suborder soils in southwest China were adopted, namely Ustic Vertisol, Stagnic Anthrosol and Ustic Ferrosol, so as to carry out the basic physical and chemical analysis respectively, to design a dynamic measuring method for water stability of soil structure and conduct the comparative study on the quality of the soil structure. The results indicated that (1) The water stability dynamic characteristic of the soil structure could well reflect the maintaining capability of the soil structure as time goes on. (2) The quality of several soil structures in southwest China was sequenced as follows: Stagnic Anthrosols 〉 Ustic Vertisols 〉 Ustic Ferrosols. (3) The water stability of soil structure is very positively correlated with the capillary porosity and the clay particle (D 〈 0.002 mm) content (Co), but is very negatively correlated with the silt (D is 0.05-0.002 ram) content (Csc), and (4) The dynamic functional equation of the water stability of soil structure in southwest China was established, so that the water stability characteristics of various soil structures could be quantitatively expressed and the quality of different soil structures can be quantitatively compared from each other. 展开更多
关键词 soil structure dynamic water stability soil erosion
下载PDF
SOIL PILE INTERACTION UNDER STATIC, DYNAMIC AND CYCLIC LATERAL LOADS AND A PROPOSAL OF p-y CURVE FORMULA 被引量:1
13
作者 Gao, Ming Chen, Jinzhen +1 位作者 Zhen, Guofang Fang, Huolang 《China Ocean Engineering》 SCIE EI 1989年第3期259-270,共12页
In this paper, the studies on soil-pile interaction behaviors in saturated sands under static, dynamic and cyclic lateral loads by model testing are described. By comparing with the field test results for piles in sof... In this paper, the studies on soil-pile interaction behaviors in saturated sands under static, dynamic and cyclic lateral loads by model testing are described. By comparing with the field test results for piles in soft sandy clay, a formula of p-y curves based on constitutive relationship of soils applicable for both sandy and soft clays is proposed. Good agreements are obtained in comparison with the field test results performed by other investigators abroad. A p-y hysteresis curve formula based on the modified Masing's doubling criterion is also proposed, and the results are in satisfactory agreement with field test results. 展开更多
关键词 FOUNDATIONS soil Structure Interaction Mathematical Models PILES Loading soilS Structural Analysis Dynamic Response
下载PDF
Dynamic Response of Fluid-Single Leg Gravity Platform-Soil Interaction System 被引量:1
14
作者 Kuang, Zhiping Cao, Guoao 《China Ocean Engineering》 SCIE EI 1993年第2期187-195,共9页
An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential o... An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential of the radiation waves and by using the motion equation and the boundary conditions, the unknown coefficients can be obtained. Thereafter the function of frequency for the interaction system may also be obtained. In this paper, the difference of the system dynamic response between rigid foundation is analyzed and the influences of the various foundation geometric dimension and the various water-depth on the hydrodynamic loading and dynamic response of the system is illustrated. 展开更多
关键词 Approximation theory Dynamic loads Dynamic response Earthquake resistance Equations of motion FLUIDS FOUNDATIONS Production platforms soil structure interactions Vibrations (mechanical)
下载PDF
Effects of different concentrations of super-absorbent polymers on soil structure and hydro-physical properties following continuous wetting and drying cycles 被引量:1
15
作者 JI Bing-yi ZHAO Chi-peng +3 位作者 WU Yue HAN Wei SONG Ji-qing BAI Wen-bo 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第11期3368-3381,共14页
Super-absorbent polymers(SAPs)are widely used chemical water-saving materials,which play an active role in the accumulation of soil water and the improvement of soil structure.Little is known about their performance w... Super-absorbent polymers(SAPs)are widely used chemical water-saving materials,which play an active role in the accumulation of soil water and the improvement of soil structure.Little is known about their performance with repeated usage or about factors influencing their efficiency under alternate wetting and drying cycles.In this study,various concentrations of SAP(0,0.1,0.2 and 0.3%)in soil following three continuous wetting and drying cycles(T1,T2 and T3),were studied to determine effects on soil structure stability and hydro-physical properties.The results indicated that the SAP improved soil water supply capacity under conditions of mild drought(T2)and sufficient irrigation(T3)at concentrations of 0.2 and 0.3%,but a reduction was observed under severe drought conditions(T1),which was negatively correlated with the SAP concentration.The physical adsorption of the SAP by soil and the chemical connection between the SAP and soil mineral colloids as Si-O-Si bonds,-OH bonds and different crystalline silica were the important factors that directly lead to the reduction of water retention capacities of the SAP with alternating wet and dry conditions.Compared with the control,the soil liquid phase ratios of the SAP treatments were increased by8.8-202.7%in the T1 and T2 cycles,which would have led to a decrease in the soil air phase ratios.After repeated wetting and drying cycles,the SAP treatments increased the amount of>0.25 mm soil aggregates and the contents of water-stable macro-aggregate(R_(0.25)),and decreased the amount of<0.053 mm soil aggregates,especially with higher concentrations of the SAP.Increases in mean weight diameter(MWD)and geometric mean diameter(GMD),and declines in fractal dimension(D)and unstable aggregates index(E_(LT))were all observed with the SAP treatments,which indicated an improvement in soil stability and structure.It was concluded that the distribution and stability of soil aggregates and soil water supply capacity was closely related to SAP concentration,soil moisture condition and the interaction between the SAP and soil particles. 展开更多
关键词 super-absorbent polymer(SAP) soil water soil structure soil aggregate soil colloid
下载PDF
Soil Aggregation and Its Relationship with Organic Carbon of Purple Soils in the Sichuan Basin,China 被引量:1
16
作者 WEI Chao-fu SHAO Jing-an +4 位作者 NI Jiu-pai GAO Ming XIE De-ti PAN Gen-xing Shuichi Hasegawa 《Agricultural Sciences in China》 CAS CSCD 2008年第8期987-998,共12页
The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purp... The interaction of soil aggregate dynamics with soil organic carbon is complex with varied spatio-temporal processes in macro-and micro-aggregates. This paper is to determine the aggregation of soil aggregates in purple soils (Regosols in FAO Taxonomy or Entisols in USDA Taxonomy) for four types of land use, cropland [corn (Zea mays L.)], orchard (citrus), forestland (bamboo or cypress), and barren land (wild grass), and to explore their relationship with soil organic carbon in the Sichuan basin of southwestern China. Procedures and methods, including manual dry sieving procedure, Yoder's wet sieving procedure, pyrophosphates solution method, and Kachisky method, are used to acquire dry, wet, and chemically stable aggregates, and microaggregates. Light and heavy fractions of soil organic carbon were separated using 2.0 g·mL^-1 HgI2-KI mixed solution. The loosely, stably, and tightly combined organic carbon in heavy fraction were separated by extraction with 0.1 M NaOH and 0.1 M NaOH-0.1M Na4P2O7 mixed solution (pH 13). The results show that the contents of dry and wet macroaggregates 〉0.25 mm in diameter were 974.1 and 900.0 g·kg^-1 highest in red brown purple soils under forestland, while 889.6 and 350.6 g·kg^-1 lowest in dark purple soil and lowest in grey brown purple soils under cropland, respectively. The chemical stability of macroaggregates was lowest in grey brown purple soil with 8.47% under cropland, and highest in red brown purple soil with 69.34% under barren land. The content of microaggregates in dark purple soils was 587g·kg^-1 higher than brown purple soils, while 655g·kg^-1 in red brown purple soils was similar to grey brown purple soils (651g·kg^-1). Cropland conditions, only 38.4% of organic carbon was of the combined form, and 61.6% of that existed in light fraction. Forestland conditions, 90.7% of organic carbon in red brown purple soil was complexed with minerals as a form of humic substances. The contents and stability of wet aggregates 〉 0.25 mm, contents and stability of chemically stable aggregates 〉0.25 mm, contents of microaggregates 〉 0.01 mm, contents of aggregated primary particle (d〈0.01 mm) and degree of primary particles (d 〈0.01 mm) aggregation were closely related to the concentrations of total soil organic carbon, and loosely and tightly combined organic carbon in heavy fraction. Soil microaggregation could be associated with organic carbon concentration and its combined forms in heavy fraction. There was a direct relationship between microaggregation and macroaggregation of soil primary particles, because the contents of wet aggregates 〉 0.25 mm and its water stability of aggregates were highly correlated with the contents of aggregated primary particle (d 〈 0.01 mm) and the degree of primary particles (d 〈 0.01 mm) aggregation. 展开更多
关键词 aggregation of soil primary particle soil structure soil organic carbon aggregate size distribution complexingof organo-mineral purple soil
下载PDF
Analysis of the Microstructure and Macroscopic Fluid-Dynamics Behavior of Soft Soil after Seepage Consolidation 被引量:1
17
作者 Fang Jin Dong Zhou Liying Zhu 《Fluid Dynamics & Materials Processing》 EI 2022年第2期285-302,共18页
The purpose is to study the microstructure and macroscopic fluid-dynamic behavior of soft soil after it has been subjected to a seepage consolidation procedure.First,the microscopic pore structure of soft clay is quan... The purpose is to study the microstructure and macroscopic fluid-dynamic behavior of soft soil after it has been subjected to a seepage consolidation procedure.First,the microscopic pore structure of soft clay is quantitatively studied by a scanning electron microscope technique.Second,the average contact area rate of soil particles is obtained employing statistical analysis applied to microscopic images of soft soil,and the macroscopic porosity of soft clay is determined through an indoor geotechnical test.Finally,mathematical relationships are introduced by fitting the results of the test.The results show that the unmodified empirical equation for the permeability coefficient of coarse-grained soil produces large errors in calculations related to cohesive soils.By contrast,the permeability coefficient calculated by the empirical equation modified by the average contact area ratio theory is in good agreement with the measured average value of the indoor test. 展开更多
关键词 Seepage consolidation soil structure MICROSTRUCTURE macro-mechanics
下载PDF
A DUAL-SURFACE DAMAGE MODEL AND EVALUATION FOR NATURAL SOILS WITHIN THE THERMOMECHANICAL FRAMEWORK 被引量:1
18
作者 Xuan Guo Chenggang Zhao +1 位作者 Dajun Yuan Mengshu Wang 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第1期85-94,共10页
Naturally deposited or residual soils exhibit more complicated behavior than remolded clays. A dual-surface damage model for structured soils is developed based on the thermodynamics framework established in our first... Naturally deposited or residual soils exhibit more complicated behavior than remolded clays. A dual-surface damage model for structured soils is developed based on the thermodynamics framework established in our first paper. The shift stresses and the transformation between the generalized dissipative stress space and actual stress space are established following a systematic procedure. The corresponding constitutive behavior of the proposed model is determined, which reflects the internal structural configuration and damage behavior for geomaterials. Four evolution variables κj^i(i=D, R;j=V, S) and the basic parameters λ, s, v and e0 are introduced to account for the progressive loss of internal structure for natural clays. A series of fully triaxial tests and isotropic compression tests are performed for structured and reconstituted samples of Beijing and Zhengzhou natural clays. The validation of the proposed model is examined by comparing the numerical results with the experimental data. 展开更多
关键词 dual-surface damage model triaxial tests structured soils thermomechanical approach COMPRESSIBILITY
下载PDF
Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil 被引量:5
19
作者 LI Juan LI Yan-ting +3 位作者 YANG Xiang-dong ZHANG Jian-jun LIN Zhi-an ZHAO Bing-qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2500-2511,共12页
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental ... Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H' and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China's soil resource. 展开更多
关键词 long-term fertilization regimes organic amendment soil microbial community structure microbial functional metabolic activity carbon substrate utilization
下载PDF
Geotechnical particle finite element method for modeling of soilstructure interaction under large deformation conditions 被引量:1
20
作者 Josep Maria Carbonell Lluís Monforte +2 位作者 Matteo O.Ciantia Marcos Arroyo Antonio Gens 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期967-983,共17页
The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems tha... The possibilities of the particle finite element method(PFEM)for modeling geotechnical problems are increasingly evident.PFEM is a numerical approach to solve large displacement and large strain continuum problems that are beyond the capabilities of classical finite element method(FEM).In PFEM,the computational domain is reconfigured for optimal solution by frequent remeshing and boundary updating.PFEM inherits many concepts,such as a Lagrangian description of continuum,from classic geomechanical FEM.This familiarity with more popular numerical methods facilitates learning and application.This work focuses on G-PFEM,a code specifically developed for the use of PFEM in geotechnical problems.The article has two purposes.The first is to give the reader an overview of the capabilities and main features of the current version of the G-PFEM and the second is to illustrate some of the newer developments of the code.G-PFEM can solve coupled hydro-mechanical static and dynamic problems involving the interaction of solid and/or deformable bodies.Realistic constitutive models for geomaterials are available,including features,such as structure and destructuration,which result in brittle response.The solutions are robust,solidly underpinned by numerical technology including mixedfield formulations,robust and mesh-independent integration of elastoplastic constitutive models and a rigorous and flexible treatment of contact interactions.The novel features presented in this work include the contact domain technique,a natural way to capture contact interactions and impose contact constraints between different continuum bodies,as well as a new simplified formulation for dynamic impact problems.The code performance is showcased by the simulation of several soil-structure interaction problems selected to highlight the novel code features:a rigid footing insertion in soft rock,pipeline insertion and subsequent lateral displacement on over-consolidated clay,screw-pile pull-out and the dynamic impact of a free-falling spherical penetrometer into clay. 展开更多
关键词 Particle finite element method(PFEM) Structured soils Nonlocal elastoplasticity Contact domain method soil penetration problems
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部