Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, an...Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes >2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes <0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(<0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term.展开更多
This article, by combining field investigation with laboratorial analysis, studies diverse alpine meadow at the Eastern Margin of the Qinghai-Tibet Plateau for the underground biomass dynamics, vertical distribution o...This article, by combining field investigation with laboratorial analysis, studies diverse alpine meadow at the Eastern Margin of the Qinghai-Tibet Plateau for the underground biomass dynamics, vertical distribution of the content of soil carbon and nitrogen, the connection between the biomass and the content of carbon and nitrogen. The studies show that underground biomass in the herb layer of upland meadow is more than that in the terrace meadow, while underground biomass in the upland shrubland is the most. The vertical distribution of underground biomass of each type is obvious as in shape of"T". As to the distribution of the content of soil organic carbon in the three sample grounds, it showed that the deeper the soil the less the content of soil organic carbon. In May, unlike at terrace meadow, the underground biomass and the content of soil organic carbon in positive proportion, such revelation at upland meadow and upland shrubland is not apparent. In July, at upland meadow and terrace meadow the underground biomass and the content of soil total nitrogen in positive proportion, such revelation at upland shrubland is not apparent either.展开更多
基金funded by the Science & Technology Pillar Program of Gansu Province (1104FKCH162, 1204FKCH164, 1304FKCH102)the National Natural Science Foundation of China (31560170)
文摘Soil organic matter content in water-stable aggregates(WSA) in the arid ecosystems(abandoned agricultural lands especially) of China is poorly understood. In this study, we examined the WSA sizes and stability, and soil organic carbon(OC) and nitrogen(N) contents in agricultural lands with abandonment ages of 0, 3, 12, 20, 30 and 40 years, respectively, in the Minqin Oasis of Northwest China. The total soil OC and N contents at depths of 0–20, 20–40 and 40–60 cm in abandoned agricultural lands were compared to those in cultivated land(the control). Agricultural land abandonment significantly(P0.25 mm) as the age of agricultural land abandonment increased. The effect of abandonment ages of agricultural lands on MWD was determined by the changes of OC and N accumulation in WSA sizes >2 mm. The total OC and N contents presented a stratification phenomenon across soil depths in this arid ecosystem. That is, both of them decreased significantly at depths of 0–20 and 40–60 cm while increased at the depth of 20–40 cm. The WSA sizes <0.053 mm had the highest soil OC and N contents(accounting for 51.41%–55.59% and 42.61%–48.94% of their total, respectively). Soil OC and N contents in microaggregates(sizes 0.053–0.25 mm) were the dominant factors that influenced the variations of total OC and N contents in abandoned agricultural lands. The results of this study suggested that agricultural land abandonment may result in the recovery of WSA stability and the shifting of soil organic matter from the silt+clay(<0.053 mm) and microaggregate fractions to the macroaggregate fractions. However, agricultural land abandonment did not increase total soil OC and N contents in the short-term.
基金the key Item of Sichuan Education Depart-ment (2006A070)
文摘This article, by combining field investigation with laboratorial analysis, studies diverse alpine meadow at the Eastern Margin of the Qinghai-Tibet Plateau for the underground biomass dynamics, vertical distribution of the content of soil carbon and nitrogen, the connection between the biomass and the content of carbon and nitrogen. The studies show that underground biomass in the herb layer of upland meadow is more than that in the terrace meadow, while underground biomass in the upland shrubland is the most. The vertical distribution of underground biomass of each type is obvious as in shape of"T". As to the distribution of the content of soil organic carbon in the three sample grounds, it showed that the deeper the soil the less the content of soil organic carbon. In May, unlike at terrace meadow, the underground biomass and the content of soil organic carbon in positive proportion, such revelation at upland meadow and upland shrubland is not apparent. In July, at upland meadow and terrace meadow the underground biomass and the content of soil total nitrogen in positive proportion, such revelation at upland shrubland is not apparent either.