In this study,a novel solgel method has been developed to prepare LiTi2(PO4)3 lithium ion conductor as monophase at relatively low temperature(600).According to the XRD and IR analysis,the asprepared sample remained a...In this study,a novel solgel method has been developed to prepare LiTi2(PO4)3 lithium ion conductor as monophase at relatively low temperature(600).According to the XRD and IR analysis,the asprepared sample remained an amorphous state up to 500.The activation energy was calculated to be 252 kJ/mol according to the modified Kissinger equation.展开更多
SnO2 nanocrystal and rare-earth Eu^3+ ion co-doped SiO2 thin films are prepared by sol-gel and spin coating methods. The formation of tetragonal rutile structure SnO2 nanocrystals with a uniform distribution is confi...SnO2 nanocrystal and rare-earth Eu^3+ ion co-doped SiO2 thin films are prepared by sol-gel and spin coating methods. The formation of tetragonal rutile structure SnO2 nanocrystals with a uniform distribution is confirmed by X-ray diffraction and transmission electron microscopy. Fourier transform infrared spectroscopy is used to investigate the densities of the hydroxyl groups, and it is found that the emission intensity from the 5Do-TF2 transitions of the Eu^3+ ions is enhanced by two orders of magnitude due to energy transfer from the oxygen-vacancy-related defects of the SnO2 nanocrystals to nearby Eu^3+ ions. The influences of the amounts of Sn and the post-annealing temperatures are systematically evaluated to further understand the mechanism of energy transfer. The luminescence intensity ratio of Eu^3+ ions from electric dipole transition and magnetic dipole transition indicate the different probable locations of Eu^3+ ions in the sol-gel thin film, which are further discussed based on temperature-dependent photoluminescence measurements.展开更多
文摘In this study,a novel solgel method has been developed to prepare LiTi2(PO4)3 lithium ion conductor as monophase at relatively low temperature(600).According to the XRD and IR analysis,the asprepared sample remained an amorphous state up to 500.The activation energy was calculated to be 252 kJ/mol according to the modified Kissinger equation.
基金Project supported by the National Natural Science Foundation of China(Grant No.61036001)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2010010)the Fundamental Research Funds for the Central Universities of China(Grant Nos.1112021001 and 1116021003)
文摘SnO2 nanocrystal and rare-earth Eu^3+ ion co-doped SiO2 thin films are prepared by sol-gel and spin coating methods. The formation of tetragonal rutile structure SnO2 nanocrystals with a uniform distribution is confirmed by X-ray diffraction and transmission electron microscopy. Fourier transform infrared spectroscopy is used to investigate the densities of the hydroxyl groups, and it is found that the emission intensity from the 5Do-TF2 transitions of the Eu^3+ ions is enhanced by two orders of magnitude due to energy transfer from the oxygen-vacancy-related defects of the SnO2 nanocrystals to nearby Eu^3+ ions. The influences of the amounts of Sn and the post-annealing temperatures are systematically evaluated to further understand the mechanism of energy transfer. The luminescence intensity ratio of Eu^3+ ions from electric dipole transition and magnetic dipole transition indicate the different probable locations of Eu^3+ ions in the sol-gel thin film, which are further discussed based on temperature-dependent photoluminescence measurements.