A hybrid heat pump(compression/absorption)with an integrated thermal photovoltaic unit is studied.The considered working fluids are organic mixtures:R245fa/DMAC and R236fa/DMAC,chosen for their low Global Warming Pote...A hybrid heat pump(compression/absorption)with an integrated thermal photovoltaic unit is studied.The considered working fluids are organic mixtures:R245fa/DMAC and R236fa/DMAC,chosen for their low Global Warming Potential.The main objective is the optimization of energy efficiency in order to minimize the environmental impact through the implementation of a sustainable strategy.It is shown that Exergy Analysis itself is a valuable tool in energy integration.Within the imposed framework of minimizing total annual costs,entropy analysis can be instrumental in determining the optimal plant concept,optimizing energy conversion and use,and improving profitability.The present results are discussed under the optimistic hope that they may help to define new energy and environmental policies.展开更多
In this project, different combinations of solar energy and heat pump systems for preparation of DHW (domestic hot water) and space heating of buildings are analyzed through dynamic system simulations in TRNSYS (Tr...In this project, different combinations of solar energy and heat pump systems for preparation of DHW (domestic hot water) and space heating of buildings are analyzed through dynamic system simulations in TRNSYS (Transient System Simulation Program). In such systems, solar thermal energy can be used, on one hand, directly to charge the buffer storage and, on the other hand, as heat source for the evaporator oftbe HP (heat pump). In this work systems, in which solar heat is only used directly (parallel operation of solar and HP), systems using the collectors also as a heat source for the HP are analyzed and compared to conventional air HP systems. With a combined parallel solar thermal HP system, the system performance compared to a conventional HP system can be significantly increased. Unglazed selectively coated collectors as source for the HP have the advantage that the collector can be used as an air heat exchanger. If solar radiation is available and the collector is used as source for the HP, higher temperatures at the evaporator of the HP can be achieved than with a conventional air HP system.展开更多
This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calcu...This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calculation and experiment.The results show that the average absolute error is less than 0.6 ℃ and the relative error is less than 5% under the pulse load when the analytical solution to the 2-D solid cylindrical source model is used for the SAGSHPS.The coefficient of performance (COP) of the SAGSHPS is 2.95-4.70.The average fluid temperature in the borehole heat exchanger can increase by 3 ℃ with the assistance of solar collector,which will improve the COP of the heat pump by approximately 10% from the experimental data.The energy contributions to the total heating load of soil,electricity and solar are 56.30%,36.87% and 6.83%,respectively.展开更多
Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar ene...Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period.展开更多
A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water t...A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.展开更多
Direct expansion solar assisted heat pump (DX-SAHP) technology is developed by combining solar energy heat utilization with heat pump energy saving technology. The experimental researches of the DX-SAHP hot water syst...Direct expansion solar assisted heat pump (DX-SAHP) technology is developed by combining solar energy heat utilization with heat pump energy saving technology. The experimental researches of the DX-SAHP hot water system are conducted in this paper, and overall performance of DX-SAHP is analyzed with three different structures of collectors/evaporators, namely a bare-plate collector, a glass-plate collector and double collectors/evaporators (a bare-plate collector and a glass-plate collector). The influence factors and overall performance are studied, which show that the overall performance of the system is mainly influenced by solar irradiation intensity and the collector area. Comparing with glass-plate collector in similar conditions, bare-plate collector system COP is higher. While increasing collector area is conducive to improve the system COP, but will reduce the collector efficiency and increase the workload of the compressor by comparing the bare-plate collector with double-plate collectors.展开更多
太阳能-空气源热泵热水系统(solar-air source heat pump hot water system, SAHWS)常用于宿舍楼宇供暖,通过对系统参数的优化设计可显著提高系统能效性能与环境友好性。为得到一种综合考虑SAHWS经济、能源、环保与节能的优化方法,提出...太阳能-空气源热泵热水系统(solar-air source heat pump hot water system, SAHWS)常用于宿舍楼宇供暖,通过对系统参数的优化设计可显著提高系统能效性能与环境友好性。为得到一种综合考虑SAHWS经济、能源、环保与节能的优化方法,提出了一种新型组合优化设计策略,并利用TRNSYS软件搭建系统仿真模型,以西安、西宁、拉萨这3座不同太阳能资源等级城市为例,对SAHWS运行工况对比分析。结果表明:与常用生命周期成本设计相比,所提出的组合优化设计不仅降低了系统成本,还有着较低的系统能耗;组合优化设计的热泵能耗与工作小时数最短,且有最低的热损,在投资成本、系统季节性能因子、太阳能保证率以及碳粉尘、二氧化碳排放量均有较好表现。展开更多
为解决中深层地源热泵系统(GSHP)地温衰减的问题,以邯郸市某民用节能建筑为研究对象,基于TRNSYS建立一种PV/T耦合中深层地源热泵系统(PV/T-GSHP),并与GSHP系统对比,模拟分析运行20 a PV/T-GSHP系统运行特性。探究PV/T组件的相关参数对...为解决中深层地源热泵系统(GSHP)地温衰减的问题,以邯郸市某民用节能建筑为研究对象,基于TRNSYS建立一种PV/T耦合中深层地源热泵系统(PV/T-GSHP),并与GSHP系统对比,模拟分析运行20 a PV/T-GSHP系统运行特性。探究PV/T组件的相关参数对土壤平均温度的影响。最后,将PV/T-GSHP系统与其他系统进行能耗对比。研究结果表明:与GSHP系统相比,PV/T-GSHP系统机组COP从6.44提高到6.81,但由于增加了泵功,系统COP降到2.38,但考虑发电量,平均每年可获得10015.831元收益;相似结构建筑PV/T组件屋顶铺设占比越大,集热泵流量越小,土壤平均温升越快;不考虑发电量时,PV/T-GSHP系统比燃气锅炉系统能耗高8.46%,与燃煤锅炉和电锅炉系统相比,分别可节约11.04%和48.55%的能耗;综合发电量时,20 a实际获得的发电量收益折合成燃煤量为210.05 t。展开更多
文摘A hybrid heat pump(compression/absorption)with an integrated thermal photovoltaic unit is studied.The considered working fluids are organic mixtures:R245fa/DMAC and R236fa/DMAC,chosen for their low Global Warming Potential.The main objective is the optimization of energy efficiency in order to minimize the environmental impact through the implementation of a sustainable strategy.It is shown that Exergy Analysis itself is a valuable tool in energy integration.Within the imposed framework of minimizing total annual costs,entropy analysis can be instrumental in determining the optimal plant concept,optimizing energy conversion and use,and improving profitability.The present results are discussed under the optimistic hope that they may help to define new energy and environmental policies.
文摘In this project, different combinations of solar energy and heat pump systems for preparation of DHW (domestic hot water) and space heating of buildings are analyzed through dynamic system simulations in TRNSYS (Transient System Simulation Program). In such systems, solar thermal energy can be used, on one hand, directly to charge the buffer storage and, on the other hand, as heat source for the evaporator oftbe HP (heat pump). In this work systems, in which solar heat is only used directly (parallel operation of solar and HP), systems using the collectors also as a heat source for the HP are analyzed and compared to conventional air HP systems. With a combined parallel solar thermal HP system, the system performance compared to a conventional HP system can be significantly increased. Unglazed selectively coated collectors as source for the HP have the advantage that the collector can be used as an air heat exchanger. If solar radiation is available and the collector is used as source for the HP, higher temperatures at the evaporator of the HP can be achieved than with a conventional air HP system.
基金Supported by National Natural Science Foundation of China(No.1272263)
文摘This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by calculation and experiment.The results show that the average absolute error is less than 0.6 ℃ and the relative error is less than 5% under the pulse load when the analytical solution to the 2-D solid cylindrical source model is used for the SAGSHPS.The coefficient of performance (COP) of the SAGSHPS is 2.95-4.70.The average fluid temperature in the borehole heat exchanger can increase by 3 ℃ with the assistance of solar collector,which will improve the COP of the heat pump by approximately 10% from the experimental data.The energy contributions to the total heating load of soil,electricity and solar are 56.30%,36.87% and 6.83%,respectively.
基金Project(GC06A316) supported by the Key Technologies Research and Development Program of Heilongjiang Province, China Project(11531038) supported by the Program of the Educational Commission of Heilongjiang Province of China.
文摘Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period.
基金Project(2006BAJ03A06) supported by National Science and Technology Pillar Program During 11th Five-Year Plan
文摘A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.
文摘Direct expansion solar assisted heat pump (DX-SAHP) technology is developed by combining solar energy heat utilization with heat pump energy saving technology. The experimental researches of the DX-SAHP hot water system are conducted in this paper, and overall performance of DX-SAHP is analyzed with three different structures of collectors/evaporators, namely a bare-plate collector, a glass-plate collector and double collectors/evaporators (a bare-plate collector and a glass-plate collector). The influence factors and overall performance are studied, which show that the overall performance of the system is mainly influenced by solar irradiation intensity and the collector area. Comparing with glass-plate collector in similar conditions, bare-plate collector system COP is higher. While increasing collector area is conducive to improve the system COP, but will reduce the collector efficiency and increase the workload of the compressor by comparing the bare-plate collector with double-plate collectors.
文摘太阳能-空气源热泵热水系统(solar-air source heat pump hot water system, SAHWS)常用于宿舍楼宇供暖,通过对系统参数的优化设计可显著提高系统能效性能与环境友好性。为得到一种综合考虑SAHWS经济、能源、环保与节能的优化方法,提出了一种新型组合优化设计策略,并利用TRNSYS软件搭建系统仿真模型,以西安、西宁、拉萨这3座不同太阳能资源等级城市为例,对SAHWS运行工况对比分析。结果表明:与常用生命周期成本设计相比,所提出的组合优化设计不仅降低了系统成本,还有着较低的系统能耗;组合优化设计的热泵能耗与工作小时数最短,且有最低的热损,在投资成本、系统季节性能因子、太阳能保证率以及碳粉尘、二氧化碳排放量均有较好表现。
文摘为解决中深层地源热泵系统(GSHP)地温衰减的问题,以邯郸市某民用节能建筑为研究对象,基于TRNSYS建立一种PV/T耦合中深层地源热泵系统(PV/T-GSHP),并与GSHP系统对比,模拟分析运行20 a PV/T-GSHP系统运行特性。探究PV/T组件的相关参数对土壤平均温度的影响。最后,将PV/T-GSHP系统与其他系统进行能耗对比。研究结果表明:与GSHP系统相比,PV/T-GSHP系统机组COP从6.44提高到6.81,但由于增加了泵功,系统COP降到2.38,但考虑发电量,平均每年可获得10015.831元收益;相似结构建筑PV/T组件屋顶铺设占比越大,集热泵流量越小,土壤平均温升越快;不考虑发电量时,PV/T-GSHP系统比燃气锅炉系统能耗高8.46%,与燃煤锅炉和电锅炉系统相比,分别可节约11.04%和48.55%的能耗;综合发电量时,20 a实际获得的发电量收益折合成燃煤量为210.05 t。