期刊文献+
共找到50,731篇文章
< 1 2 250 >
每页显示 20 50 100
Solar System. Angular Momentum. New Physics 被引量:7
1
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2019年第1期112-139,共28页
The most widely accepted model of Solar System formation, known as the Nebular hypothesis, does not solve the Angular Momentum problem—why is the orbital momentum of Jupiter larger than rotational momentum of the Sun... The most widely accepted model of Solar System formation, known as the Nebular hypothesis, does not solve the Angular Momentum problem—why is the orbital momentum of Jupiter larger than rotational momentum of the Sun? The present manuscript introduces a Rotational Fission model of creation and evolution of Macrostructures of the World (Superclusters, Galaxies, Extrasolar Systems), based on Overspinning Cores of the World’s Macroobjects, and the Law of Conservation of Angular Momentum. The Hypersphere World-Universe model is the only cosmological model in existence that is consistent with this Fundamental Law. 展开更多
关键词 Hypersphere World-Universe Model Medium of the World Fifth Fundamental Force DARK MATTER Particles Macroobjects Structure Rotational Fission Law of Conservation of Angular Momentum DARK EPOCH Light EPOCH DARK MATTER Reactor solar CORONA GEOCORONA Planetary CORONA solar Wind
下载PDF
Dark Matter Cosmology and Astrophysics 被引量:8
2
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2019年第4期999-1050,共52页
Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WU... Hypersphere World-Universe Model (WUM) envisions Matter carried from Universe into World from fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is byproduct of Dark Matter (DM) annihilation. WUM introduces Dark Epoch (spanning from Beginning of World for 0.4 billion years) when only DMPs existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in standard cosmological model is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and annihilation of DMPs. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Mysterious Star KIC 8462852 with irregular dimmings;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded Objects in Solar system and their Internal Heat;Lightning Initiation problem—electric fields observed inside thunderstorms are not sufficient to initiate sparks;Terrestrial Gamma-Ray Flashes—bursts of high energy X-rays and gamma rays emanating from Earth. Model makes predictions pertaining to Masses of DMPs, proposes New Types of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements. 展开更多
关键词 Hypersphere World-Universe Model Law of Conservation of Angular Momentum DARK EPOCH Rotational Fission Luminous EPOCH Multiworld DARK MATTER Particles Macroobject Shell Model DARK MATTER Core Medium of the World Mysterious Star KIC 8462852 DARK MATTER Fermi Bubbles solar CORONA Geocorona Planetary CORONA Galactic Wind solar Wind High-Energy Atmospheric Physics Lightning Initiation Problem Terrestrial GAMMA-RAY Flashes GAMMA-RAY BURSTS Gravitational BURSTS Ball Lightning
下载PDF
A Decision Support System for Selection of Solar Power Plant Locations by Applying Fuzzy AHP and TOPSIS: An Empirical Study 被引量:2
3
作者 Athakorn Kengpol Piya Rontlaong Markku Tuominen 《Journal of Software Engineering and Applications》 2013年第9期470-481,共12页
The objective of this research is to propose a decision support system for avoiding flood on solar power plant site selection. Methodologically, the geographic information system (GIS) is used to determine the optimum... The objective of this research is to propose a decision support system for avoiding flood on solar power plant site selection. Methodologically, the geographic information system (GIS) is used to determine the optimum site for a solar power plant. It is intended to integrate the qualitative and quantitative variables based upon the adoption of the Fuzzy Analytic Hierarchy Process (Fuzzy AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) model. These methods are employed to unite the environmental aspects and social needs for electrical power systematically. Regarding a case study of the choice of a solar power plant site in Thailand, it demonstrates that the quantitative and qualitative criteria should be realized prior to analysis in the Fuzzy AHP-TOPSIS model. The fuzzy AHP is employed to determine the weights of qualitative and quantitative criteria that can affect the selection process. The adoption of the fuzzy AHP is aimed to model the linguistic unclear, ambiguous, and incomplete knowledge. Additionally, TOPSIS, which is a ranking multi-criteria decision making method, is employed to rank the alternative sites based upon overall efficiency. The contribution of this paper lies in the evolution of a new approach that is flexible and practical to the decision maker, in providing the guidelines for the solar power plant site choices under stakeholder needs: at the same time, the desirable functions are achieved, in avoiding flood, reducing cost, time and causing less environmental impact. The new approach is assessed in the empirical study during major flooding in Thailand during the fourth quarter of 2011 to 2012. The result analysis and sensitivity analysis are also presented. 展开更多
关键词 solar Power Plant Site SELECTION Decision Support System Fuzzy ANALYTIC Hierarchy Process (FAHP) Technique for Order PREFERENCE by Similarity to IDEAL Solution (TOPSIS)
下载PDF
Theory of Electromagnetism and Gravity —Modeling Earth as a Rotating Solenoid Coil
4
作者 Greg Poole 《Journal of High Energy Physics, Gravitation and Cosmology》 2017年第4期663-692,共30页
Presented in this manuscript are conventional electrical engineering tools to model the earth as a rotating electrical machine. Calculations using known parameters of the earth and measured field data has resulted in ... Presented in this manuscript are conventional electrical engineering tools to model the earth as a rotating electrical machine. Calculations using known parameters of the earth and measured field data has resulted in new understanding of the earth’s electrical system and gyroscopic rotation. The material makeup of the inner earth is better understood based on derived permeability and permittivity constants. The planet has been modeled as simple coils and then as a parallel impedance circuit which has led to fundamental insight into planetary speed control and RLC combination for Schumann Resonance of 7.83 Hz. Torque and Voltage Constants and the inverse Speed Constant are calculated using three methods and all compare favorably with Newton’s Gravitational Constant. A helical resonator is referenced and Schumann’s Resonant ideal frequency is calculated and compared with others idealism. A new theory of gravity based on particle velocity selector at the poles is postulated. Two equations are presented as the needed links between Faraday’s electromagnetism and Newtonian physics. Acceleration and Deceleration of earth is explained as a centripetal governor. A new equation for planetary attraction and the attraction of atomic matter is theorized. Rotation of the earth’s electrical coil is explained in terms of the Richardson effect. Electric power transfer from the sun to the planets is proposed via Flux Transfer Events. The impact of this evolving science of electromagnetic modeling of planets will be magnified as the theory is proven, and found to be useful for future generations of engineers and scientists who seek to discover our world and other planets. 展开更多
关键词 Ampere Biot-Savart CENTRIPETAL Acceleration CENTRIPETAL GOVERNOR Dynamo EARTH Einstein-de Haas Effect Electric Field Electromagnetism Flux Transfer Events GOVERNOR Control GRAVITY Gravitational CONSTANT Helical Resonator Lenz Law Lorentz Lightning Magnetic Field Motor CONSTANT Parallel Impedance Planet SPEED Control Schumann Resonance Richardson Effect Solenoid SPEED CONSTANT solar Power System Torque CONSTANT Velocity Selector Voltage CONSTANT
下载PDF
On the Tempo-Spatial Evolution of the Lower Ionospheric Perturbation for the 2016 Kumamoto Earthquakes from Comparisons of VLF Propagation Data Observed at Multiple Stations with Wave-Hop Theoretical Computations 被引量:2
5
作者 Tomokazu Asano Masashi Hayakawa 《Open Journal of Earthquake Research》 2018年第3期161-185,共25页
There have been published many papers on VLF (very low frequency) characteristics to study seismo-ionospheric perturbations. Usually VLF records (amplitude and/or phase) are used to investigate mainly the temporal evo... There have been published many papers on VLF (very low frequency) characteristics to study seismo-ionospheric perturbations. Usually VLF records (amplitude and/or phase) are used to investigate mainly the temporal evolution of VLF propagation anomalies with special attention to one particular propagation path. The most important advantage of this paper is the simultaneous use of several propagation paths. A succession of earthquakes (EQs) happened in the Kumamoto area in Kyusyu Island;two strong foreshocks with magnitude of 6.5 and 6.4 on 14 April (UT) and the main shock with magnitude 7.3 on 15 April (UT). Because the EQ epicenters are not far from the VLF transmitter (with the call sign of JJI in Miyazaki prefecture), we can utilize simultaneously 8 observing stations of our network all over Japan. Together with the use of theoretical computations based on wave-hop theory, we try to trace both the temporal and spatial evolutions of the ionospheric perturbation associated with this succession of EQs. It is found that the ionospheric perturbation begins to appear about two weeks before the EQs, and this perturbation becomes most developed 5 - 3 days before the main shock. When the perturbation is most disturbed, the maximum change in vertical direction is depletion in the VLF effective ionospheric height of the order of 10 km, and its horizontal scale (or its radius) is about 1000 km. These spatio-temporal changes of the seismo-ionospheric perturbation will be investigated in details in the discus-sion, a comparison has made with the VLF characteristics of the 1995 Kobe with the same magnitude and of the same fault-type, and a brief discussion on the generation mechanism of seismo-ionospheric perturbation is finally made. 展开更多
关键词 VLF/LF Propagation Anomaly IONOSPHERIC perturbations EARTHQUAKE Precursor EARTHQUAKE Prediction the 2016 Kumamoto EARTHQUAKES Japanese VLF/LF Network Wave-Hop Computation NIGHTTIME Fluctuation Method Atmospheric Oscillation Hypothesis
下载PDF
Development and Evaluation of an All Weather-Type Solar Drying House to Make for Wood Pellet Material
6
作者 Kimio Kanayama Shinya Koga +1 位作者 Hiromu Baba Tomoyoshi Sugawara 《Open Journal of Applied Sciences》 2012年第3期153-162,共10页
To suppress the global environment pollutions, we tried to develop a new-type solar drying house by improving a typical agricultural green-house, so that an all weather-type solar drying house was invented ultimately.... To suppress the global environment pollutions, we tried to develop a new-type solar drying house by improving a typical agricultural green-house, so that an all weather-type solar drying house was invented ultimately. This house is capable to dry raw wood materials (Ogako) into suitable moisture content (Mc) to make a wood pellet. The all weather-type solar Ogako drying house is covered with a triple transparent film, and an open/close free-type shield sheet is spread along with house’s inner surface with a small space, which is opened when solar radiation is incident on the house in daytime and closed to prevent heat loss from the house while out of sun shining in night. Inside of the all weather-type solar Ogako drying house, there are four belt-conveyors over which four top radiation panels are hanged, and on which four Ogako agitators are touched, a turn-table, two hoppers, four small fans, and besides, a floor heating is molded in concrete floor. Also on the north wall outside the house, two insulated cylinders (chimney) are stood up vertically to exhaust inside moist air passively. Then, to make clearly the operation performance of the house, the drying tests for the proof examination were conducted nineteen times at first test site in Ashoro where is located east-central part of Hokkaido, Japan. As a result of the drying test for the proof examination, it was made clear that the all weather-type solar Ogako drying house is practically useful as a supplementary apparatus to produce the dried Ogako, and consequently to suppress CO2 exhaustion. 展开更多
关键词 solar ENERGY and Biomass ENERGY Agricultural Green-House Ogako Drying HOUSE WOOD Powder (Ogako) WOOD PELLET Moisture Content (Mc) Decrease of Oil Consumption Suppression of CO2 EXHAUSTION
下载PDF
Silicon and III-V Solar Cells: From Modus Vivendi to Modus Operandi
7
作者 Alexander Buzynin Yury Buzynin +5 位作者 Vladimir Shengurov Vladimir Voronkov Ansgar Menke Albert Luk’yanov Vitaly Panov Nickolay Baidus 《Green and Sustainable Chemistry》 2017年第3期217-233,共17页
In the present paper, some novel opportunities for the development of high-efficient Si and III-V-based solar cells are considered: energy-saving environment friendly low-temperature technology of forming p-n junction... In the present paper, some novel opportunities for the development of high-efficient Si and III-V-based solar cells are considered: energy-saving environment friendly low-temperature technology of forming p-n junctions in Si (1), elaboration of structurally perfect GaAs/Ge/Si epitaxial substrates (2) and application of protective antireflecting coatings based on cubic zirconia (3). As a result: 1) New technique of forming p-n junctions in silicon has been elaborated. The technique provided easy and comparatively cheap process of production of semiconductor devices such as solar cells. The essence of the technique under the study is comprised in formation p-n junctions in silicon by a change of conductivity in the bulk of the sample occurring as a result of redistribution of the impurities, which already exists in the sample before its processing by ions. It differs from the techniques of diffusion and ion doping where change of conductivity and formation of p-n junction in the sample occur as a result of introduction of atoms of the other dopants from the outside;2) The conditions for synthesis of GaAs/Ge/Si epitaxial substrates with a thin (200 nm) Ge buffer layer featured with (1 - 2) × 105 cm-2 density of the threading dislocation in the GaAs layer. Ge buffer was obtained by chemical vapor deposition with a hot wire and GaAs layer of 1 μm thick was grown by the metal organic chemical vapor deposition. Root mean square surface roughness of GaAs layers of the less than 1 nm and good photoluminescence properties along with their high uniformity were obtained;3) The conditions ensuring the synthesis of uniform functional (buffer, insulating and protective) fianite layers on Si and GaAs substrates by means of magnetron and electron-beam sputtering have been determined. Fianite films have been shown to be suitable for the use as an ideal anti-reflecting material with high protective and anticorrosive properties. 展开更多
关键词 solar Cells Green Technologies p-n JUNCTIONS Ar ION-IRRADIATION Inversion of Conductivity Silicon III-V GaAs on Si Ge Buffer YSZ ANTIREFLECTION Coatings
下载PDF
Temperature Effects on the Electrical Performance of Large Area Multicrystalline Silicon Solar Cells Using the Current Shunt Measuring Technique 被引量:1
8
作者 Hala Mohamed Abdel Mageed Ahmed Faheem Zobaa +2 位作者 Mohamed Helmy Abdel Raouf Abla Hosni Abd El-Rahman Mohamed Mamdouh Abdel Aziz 《Engineering(科研)》 2010年第11期888-894,共7页
The temperature effects on the electrical performance of a large area multicrystalline silicon solar cell with back-contact technology have been studied in a desert area under ambient conditions using the current shun... The temperature effects on the electrical performance of a large area multicrystalline silicon solar cell with back-contact technology have been studied in a desert area under ambient conditions using the current shunt measuring technique. Therefore, most of the problems encountered with traditional measuring techniques are avoided. The temperature dependency of the current shunt from 5oC up to 50oC has been investigated. Its temperature coefficient proves to be negligible which means that the temperature dependency of the solar cell is completely independent of the current shunt. The solar module installed in a tilted position at the optimum angle of the location, has been tested in two different seasons (winter and summer). The obtained solar cell short circuit current, open circuit voltage and output power are correlated with the measured incident radiation in both seasons and all results are discussed. 展开更多
关键词 Large Area MULTICRYSTALLINE Silicon solar Cell CURRENT SHUNT Measuring Technique Temperature Effects SHORT CIRCUIT CURRENT Open CIRCUIT Voltage Accumulated Power INCIDENT Radiation
下载PDF
Analysis of Dynamics of Boundary Shape Perturbation of a Rotating Elastoplastic Radially Inhomogeneous Plane Circular Disk: Analytical Approach
9
作者 Dmytro М. Lila А. А. Martynyuk 《Applied Mathematics》 2012年第5期451-456,共6页
For a rotating inhomogeneous circular disk a way of calculating dynamics of boundary shape perturbation and failure of bearing capacity is proposed in terms of small parameter method. Characteristic equation of plasti... For a rotating inhomogeneous circular disk a way of calculating dynamics of boundary shape perturbation and failure of bearing capacity is proposed in terms of small parameter method. Characteristic equation of plastic zone critical radius is obtained as a first approximation. A formula of critical angular velocity is derived which determines the stability loss of the disc according to the self-balanced form. Efficiency of the proposed method is shown by an illustrative example considered in Section 7. Values of critical angular velocity of rotation are found numerically for different parameters of the disc. 展开更多
关键词 AXISYMMETRIC ELASTOPLASTIC Problem Method of Boundary Shape perturbation ROTATING INHOMOGENEOUS Circular DISC Stability Loss Failure of Bearing Capacity Critical Angular Velocity
下载PDF
Flat Panel Solar Thermoelectric System Size Optimisation at Different Vacuum Levels
10
作者 Kazuz Ramadan 《Open Journal of Energy Efficiency》 2015年第4期53-60,共8页
A systematic experimental investigation to understand the effect of heat loss and the thermoelectric aspect ratio (cross sectional area and length) on a flat plate solar thermoelectric system performance was carried o... A systematic experimental investigation to understand the effect of heat loss and the thermoelectric aspect ratio (cross sectional area and length) on a flat plate solar thermoelectric system performance was carried out. The investigation involved a series of experiments on systems with 4 different sizes of thermoelectric generators, and it was tested in 5 different vacuum levels during the steady-state. The detailed experimental investigation provided a substantial amount of data, which revealed that the system performance of both heat and electricity power were improved when the heat lost was minimised. The system’s performance strongly depended on the aspect ratio of the thermoelectric generators. This finding might have a significant impact on the cost of the system by saving the user’s and the manufacturer’s time in examining different TEGs with different aspect ratios in order to get the optimum size optimisation of the hybrid system, as well as reduce the manufacturing cost. 展开更多
关键词 Flat ROOF Top solar COLLECTOR Hybrid solar THERMOELECTRIC System The Optimal Heat and Electric Power SEEBECK Effect ASPECT Ratio Vacuum Levels
下载PDF
Pyroelectric Bi<sub>5-x</sub>(Bi<sub>2</sub>S<sub>3</sub>)<sub>39</sub>I<sub>12</sub>S: Fibonacci Superstructure, Synthesis Options and Solar Cell Potential 被引量:2
11
作者 Hans Hermann Otto 《World Journal of Condensed Matter Physics》 2015年第2期66-77,共12页
Previously, synthetic hexagonal bismuth sulfide iodide (polar space group P63, a = 15.629(3) ?, c = 4.018(1) ?, Z = 2) has been described by the rather unsatisfactory fractional formula Bi19/3IS9 [1] 08D0C9EA79F9BACE1... Previously, synthetic hexagonal bismuth sulfide iodide (polar space group P63, a = 15.629(3) ?, c = 4.018(1) ?, Z = 2) has been described by the rather unsatisfactory fractional formula Bi19/3IS9 [1] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310037003600350038003400370039000000 -[3] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310037003600350038003400370036000000 . A redetermination of the structure using old but reliable photographic intensity data indicated the presence of additional split positions and reduced atomic occupancies. From the observed pattern of this “averaged” structure a consistent model of a superstructure with lattice parameters of a' = √13·a = 56.35(1) ?, c' = c, and a formula Bi5-x(Bi2S3)39I12S emerged, with 2 formula units in a cell of likewise P63 space group. Structural modulation may be provoked by the space the lone electron pair of Bi requires. When Bi on the 0, 0, z position of the “averaged” cell is transferred to two general six-fold sites and one unoccupied twofold one of the super-cell, more structural stability is guaranteed due to compensation of its basal plane dipole momentum. Owing to the limited intensity data available, more details of the superstructure are not accessible yet. Some physical properties and solar cell application are discussed together with suggestions of ambient temperature synthesis routes of c-axis oriented nano-rod sheets. 展开更多
关键词 Hexagonal Bismuth Sulfide Iodide SUPERSTRUCTURE Sub-Cell FIBONACCI Numbers Sequence Pyroelectricity Crystal Growth Nano-Rods Completely Inorganic solar Cell Twin-Cell Photocatalyst
下载PDF
Observed Solar Cycle Variation of the Stratospheric QBO Generated in the Mesosphere and Amplified by Upward Propagating Waves
12
作者 Hans G. Mayr Frank T. Huang Jae N. Lee 《Atmospheric and Climate Sciences》 2018年第1期63-83,共21页
With an analysis of zonal wind observations over 40 years, Salby and Callaghan [1] showed that the Quasi-biennial Oscillation (QBO) at 20 km is modulated by 11-year solar cycle (SC) variations from about 12 to 20 m/s ... With an analysis of zonal wind observations over 40 years, Salby and Callaghan [1] showed that the Quasi-biennial Oscillation (QBO) at 20 km is modulated by 11-year solar cycle (SC) variations from about 12 to 20 m/s (Figure 2). The observations are reproduced qualitatively in a study with the 3D Numerical Spectral Model, which shows that the SC effect of the stratospheric QBO is produced by dynamical downward coupling originating in the mesosphere. In this modeling study, the SC period is taken to be 10 years, and a realistic heat source is applied varying exponentially with altitude: 0.2%, surface;2%, 50 km;20%, 100 km and above. The numerical results show that the variable solar radiation in the mesosphere around 65 km generates a hemispheric symmetric Equatorial Annual Oscillation (EAO), which is modulated by relatively large SC variations. Under the influence of wave mean flow interactions, the EAO propagates into the lower atmosphere and is the dynamical source or pacemaker for the large SC modulation of the QBO. The numerical results show that the upward propagating small-scale gravity waves from the troposphere amplify the SC modulations of the QBO and EAO in the stratosphere, part of the SC mechanism. The zonal winds of the equatorial QBO and EAO produce through the meridional circulation measurable SC variations in the temperature of the stratosphere and troposphere at high latitudes. Analysis of NCEP temperature and zonal wind data (1958 to 2006) provides observational evidence of the EAO with SC variations around 11 years. 展开更多
关键词 Quasi-Biennial OSCILLATION (QBO) OBSERVED solar Cycle Variations Modeling Study Equatorial Annual OSCILLATION (EAO) Dynamical DOWNWARD Coupling Wave Mean-Flow INTERACTIONS Non-Linear INTERACTIONS
下载PDF
Highly efficient and stable organic solar cells with SnO_(2)electron transport layer enabled by UV-curing acrylate oligomers
13
作者 Mwende Mbilo Du Hyeon Ryu +7 位作者 Seungjin Lee Muhammad Haris Julius Mwakondo Mwabora Robinson Juma Musembi Hang Ken Lee Sang Kyu Lee Chang Eun Song Won Suk Shin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期124-131,共8页
The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates f... The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates for the electron transport layer(ETL)in high-performance inverted OSCs.When a solution-processed SnO_(2)ETL is employed,however,the presence of interfacial defects and suboptimal interfacial contact can lower the power conversion efficiency(PCE)and operational stability of OSCs.Herein,highly efficient and stable inverted OSCs by modification of the SnO_(2)surface with ultraviolet(UV)-curable acrylate oligomers(SAR and OCS)are demonstrated.The highest PCEs of 16.6%and 17.0%are achieved in PM6:Y6-BO OSCs with the SAR and OCS,respectively,outperforming a device with a bare SnO_(2)ETL(PCE 13.8%).The remarkable enhancement of PCEs is attributed to the optimized interfacial contact,leading to mitigated surface defects.More strikingly,improved light-soaking and thermal stability strongly correlated with the interfacial defects are demonstrated for OSCs based on SnO_(2)/UV cross-linked resins compared to OSCs utilizing bare SnO_(2).We believe that UV cross-linking oligomers will play a key role as interfacial modifiers in the future fabrication of large-area and flexible OSCs with high efficiency and stability. 展开更多
关键词 Organic solar cells SnO_(2) Surface defects Ultraviolet resins Stability Cross-linking oligomers Non-halogenated solvent
下载PDF
CO_(2) conversion to solar fuels and chemicals:Opening the new paths
14
作者 Gabriele Centi Claudio Ampelli 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期680-683,共4页
This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems... This future article discusses the new prospects and directions of CO_(2)conversion via the photo-electrocatalytic(PEC)route.The second(2nd)generation solar fuels and chemicals(SFs)are generated directly in PEC systems via electrons/protons reactions without forming molecular H_(2)as an intermediate,overcoming the thermodynamics limitations and practical issues encountered for electro-fuels produced by multistep thermocatalytic processes(i.e.CO_(2)conversion with H_(2)coming from water electrolysis).A distributed and decentralized production of SFs requires very compact,highly integrated,and intensified technologies.Among the existing reactors of advanced design(based on artificial leaves or photosynthesis),the integrated photovoltaic plus electrocatalytic(PV-EC)device is the only system(demonstrated at large scale)to produce SFs with high solar-to-fuel(STF)efficiency.However,while the literature indicates STF efficiency as the main(and only)measure of process performance,we remark here the need to refer to productivity(in terms of current density)and make tests with reliable flow PEC systems(with electrodes of at least 5–10 cm^(2))to accelerate the scaling-up process.Using approaches that minimize downstream separation costs is also mandatory.Many limitations exist in PEC systems,but most can be overcome by proper electrode and cell engineering,thus going beyond the properties of the electrocatalysts.As examples of current developments,we present the progress of(i)artificial leaf/tree devices for green H_(2)distributed production and(ii)a PEC device producing the same chemicals at both cathode and anode parts without downstream operations for green solvent distributed production.Based on these developments,future directions,such as producing fertilizers and food components from the air,are outlined.The aim is to provide new ideas and research directions from a personal perspective. 展开更多
关键词 solar fuels Artificial leaf PEC devices PV-EC devices Cell engineering green H_(2) Chemicals from theair
下载PDF
Modeling and Simulation of Heterojunction Solar Cell with Mono Crystalline Silicon
15
作者 Sajid Ullah Ayesha Gulnaz Guangwei Wang 《Journal of Applied Mathematics and Physics》 2024年第3期997-1020,共24页
The monocrystalline silicon is a promising material that could be used in solar cells that convert light into electricity. Although the cost of ordinary silicon (Si) solar cells has decreased significantly over the pa... The monocrystalline silicon is a promising material that could be used in solar cells that convert light into electricity. Although the cost of ordinary silicon (Si) solar cells has decreased significantly over the past two decades, the conversion efficiency of these cells has remained relatively high. While solar cells have a great potential as a device of renewable energy, the high cost they incur per Watt continues to be a significant barrier to their widespread implementation. As a consequence, it is vital to conduct research into alternate materials that may be used in the construction of solar cells. The heterojunction solar cell (HJSC), which is based on n-type zinc oxide (n-ZnO) and p-type silicon (p-Si), is one of the numerous alternatives of the typical Si single homojunction solar cell. There are many deficiencies that can be found in the published research on n-ZnO/p-Si heterojunction solar cell. Inconsistencies in the stated value of open circuit voltage (V<sub>oc</sub>) of the solar cell are one example of deficiency. The absence of a full theoretical study to evaluate the potential of the solar cell structure is another deficiency that can be found in these researches. A lower value of experimentally obtained V<sub>OC</sub> in comparison to the theoretical prediction based on the band-gap between n-ZnO and p-Si. There needs to be more consensus among scientists regarding the optimal conditions for the growth of zinc oxide. Many software’s are available for simulating and optimizing the solar cells based on these parameters. For this purpose, in this dissertation, I provide computational results relevant to n-ZnO/p-Si HJSC to overcome deficiencies that have been identified. While modeling and simulating the potential of the solar cell structure with AFORS-HET, it is essential to consider the constraints that exist in the real world. AFORS-HET was explicitly designed to mimic the multilayer solar cell arrangement. In AFORS-HET, we can add up to seven layers for solar cell layout. By using this software, we can figure out the open circuit voltage (V<sub>OC</sub>), the short circuit current (J<sub>SC</sub>), the quantum efficiency (QE, %), the heterojunction energy band structure, and the power conversion efficiency (PCE). 展开更多
关键词 Heterojunction solar Cell Silicon Monocrystalline DEFICIENCIES AFORS-HET OPTIMIZATION Open Circuit Voltage Quantum Efficiency
下载PDF
<i>γ</i>-Ray Irradiation Effect on MCF Rubber Solar Cells with both Photovoltaics and Sensing Involving Semiconductors Fabricated under Magnetic and Electric Fields
16
作者 Kunio Shimada Ryoju Kato +2 位作者 Ryo Ikeda Hiroshige Kikura Hideharu Takahashi 《World Journal of Mechanics》 2020年第8期95-119,共25页
For cases in which a robot with installed solar cells and a sensor operates in a nuclear reactor building or in space for extravehicular activity, we require elastic and extensible solar cells. More than two different... For cases in which a robot with installed solar cells and a sensor operates in a nuclear reactor building or in space for extravehicular activity, we require elastic and extensible solar cells. More than two different types of sensing are also required, minimally with photovoltaics and built-in electricity. Magnetic compound fluid (MCF) rubber solar cells are made of rubber, so they are elastic and extensible as well as sensitive. To achieve flexibility and an effective photovoltaic effect, MCF rubber solar cells must include both soluble and insoluble rubbers, Fe<sub>3</sub>O<sub>4</sub>, TiO<sub>2</sub>, Na<sub>2</sub>WO<sub>4</sub>∙2H<sub>2</sub>O, etc. On the basis of this constitution, we propose a consummate fabrication process for MCF rubber solar cells. The characteristics of these cells result from the semiconductor-like role of the molecules of TiO<sub>2</sub>, Fe<sub>3</sub>O<sub>4</sub>, Ni, Na<sub>2</sub>WO<sub>4</sub>∙2H<sub>2</sub>O, polydimethylsiloxane (PDMS), natural rubber (NR), oleic acid, polyvinyl alcohol (PVA), water and magnetic cluster involved in the MCF rubber. Their tendencies can be deduced by synthesizing knowledge about the enhancement of the reverse-bias saturation current <em>I</em><sub><em>S</em></sub> and the diode ideality factor <em>N</em>, with conventional knowledge about the semiconductor affected by <em>γ</em>-irradiation and the attenuation of the photon energy of <em>γ</em>-rays. 展开更多
关键词 <i>γ</i>-Irradiation Irradiation Effect RUBBER Magnetic Compound Fluid (MCF) Electrolytic Polymerization Photovoltaics solar Cells Magnetic Fluid Natural Rubber Silicone Rubber Aggregation Magnetic Field Sensor Piezo-Electricity Built-in Electricity Induced Voltage Adhesion Magnetic Cluster Robot
下载PDF
Effect of substrate temperature and oxygen plasma treatment on the properties of magnetron-sputtered CdS for solar cell applications
17
作者 Runxuan Zang Haolin Wang +9 位作者 Xiaoqi Peng Ke Li Yuehao Gu Yizhe Dong Zhihao Yan Zhiyuan Cai Huihui Gao Shuwei Sheng Rongfeng Tang Tao Chen 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第6期22-33,I0010,共13页
Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h... Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance. 展开更多
关键词 magnetron sputtering CDS substrate heating plasma treatment Sb_(2)(S Se)_(3) thin film solar cell
下载PDF
Investigation on Lanthanum Fluoride as a Novel Cathode Buffer Material Layer for the Enhancement of Stability and Performance of Organic Solar Cell
18
作者 Md. Shahinul Islam Md. Golam Saklayen +2 位作者 Md. Ferdous Rahman Hartmut Baerwolff Abu Bakar Md. Ismail 《Optics and Photonics Journal》 2014年第10期280-287,共8页
This article presents the investigation on very thin Lanthanum Fluoride (LaF3) layer as a new cathode buffer layer (CBL) for organic solar cell (OSC). OSCs were fabricated with poly(3-hexylthiophene) (P3HT) and phenyl... This article presents the investigation on very thin Lanthanum Fluoride (LaF3) layer as a new cathode buffer layer (CBL) for organic solar cell (OSC). OSCs were fabricated with poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) polymer blend at 1:1 ratio. Electron-beam evaporation at room temperature was used to deposit 3 and 5 nm thick LaF3 layer. A very smooth surface of LaF3 with an average roughness of 0.2 nm has been observed by the Atomic Force Microscope (AFM) that is expected to prevent diffusion of cathode metal ion through it and thereby enhance the lifetime and stability of OSC. Huge enhancement of JSC and VOC was also observed for 3 nm-thick LaF3 CBL. Several excellent features of the LaF3 layer such as, transporting electron through tunneling, blocking of holes to the cathode, minimizing recombination, protecting the photoactive polymer from ambient oxygen, and reducing degradation/oxidation of any low work function layer at the cathode interface, might have contributed to the performance enhancement of OSC. The experimental findings indicate the promise of LaF3 to be an excellent CBL material for OSC. 展开更多
关键词 ORGANIC Semiconductor Photoactive Polymer ORGANIC solar Cell Bulk Heterojunction solar Cells CATHODE BUFFER Layer LANTHANUM FLUORIDE Spin Coating E-Beam Evaporation
下载PDF
Optimal Sizing of Solar/Wind Hybrid Off-Grid Microgrids Using an Enhanced Genetic Algorithm 被引量:2
19
作者 Abdrahamane Traoré Hatem Elgothamy Mohamed A. Zohdy 《Journal of Power and Energy Engineering》 2018年第5期64-77,共14页
This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and e... This paper presents a method for optimal sizing of an off-grid hybrid microgrid (MG) system in order to achieve a certain load demand. The hybrid MG is made of a solar photovoltaic (PV) system, wind turbine (TW) and energy storage system (ESS). The reliability of the MG system is modeled based on the loss of power supply probability (SPSP). For optimization, an enhanced Genetic Algorithm (GA) is used to minimize the total cost of the system over a 20-year period, while satisfying some reliability and operation constraints. A case study addressing optimal sizing of an off-grid hybrid microgrid in Nigeria is discussed. The result is compared with results obtained from the Brute Force and standard GA methods. 展开更多
关键词 Optimization OFF-GRID Microgrid Renewable ENERGY ENERGY Storage Systems (ESS) solar Photovoltaic (PV) WIND Battery HYBRID Genetic Algorithm (GA)
下载PDF
Change in internal energy of thermal diffusion stagnation point Maxwell nanofluid flow along with solar radiation and thermal conductivity 被引量:4
20
作者 Mair Khan TSalahuddin +2 位作者 ATanveer MYMalik Arif Hussain 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第10期2352-2358,共7页
This paper concerns the characteristics of heat and mass transfer in upper convected Maxwell fluid flow over a linear stretching sheet with solar radiation,viscous desperation and temperature based viscosity.After bou... This paper concerns the characteristics of heat and mass transfer in upper convected Maxwell fluid flow over a linear stretching sheet with solar radiation,viscous desperation and temperature based viscosity.After boundary layer approximation,the governing equations are achieved(namely Maxwell,upper convected material derivative,thermal and concentration diffusions).By using the self-similarity transformations the governing PDEs are converted into nonlinear ODEs and solved by RK-4 method in combination with Newton Raphson(shooting technique).The effects of developed parameters on velocity,temperature,concentration,fraction factor,heat and mass diffusions are exemplified through graphs and tabular form and are deliberated in detail.Numerical values of fraction factor,heat and mass transfer rates with several parameters are computed and examined.It is noticed that the temperature is more impactable for higher values of radiative heat transport,thermal conductivity and viscous dissipation.The comparison data for some limiting case are acquired and are originated to be in good agreement with previously published articles. 展开更多
关键词 MAXWELL NANOFLUID Viscous DISSIPATION solar radiation Variable viscosity Thermal conductivity Chemical reaction STAGNATION point SHOOTING method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部