期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mysteries of Solar System Explained by WUM
1
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第3期775-799,共25页
E. Stone in the article “18 Mysteries and Unanswered Questions About Our Solar System. Little Astronomy” wrote: One of the great things about astronomy is that there is still so much out there for us to discover. Th... E. Stone in the article “18 Mysteries and Unanswered Questions About Our Solar System. Little Astronomy” wrote: One of the great things about astronomy is that there is still so much out there for us to discover. There are so many unanswered questions and mysteries about the universe. There is always a puzzle to solve and that is part of beauty. Even in our own neighborhood, the Solar System, there are many questions we still have not been able to answer [1]. In the present paper, we explain the majority of these Mysteries and some other unexplained phenomena in the Solar System (SS) in frames of the developed Hypersphere World-Universe Model (WUM) [2]. 展开更多
关键词 World-Universe Model solar system formation Structure of solar system Mysteries of solar system Explained Problems of solar system
下载PDF
Formation of the Kuiper Belt by Long Time-Scale Migration of Jovian Planets
2
作者 Jian Li Li-Yong Zhou Yi-Sui Sun 《Chinese Journal of Astronomy and Astrophysics》 CSCD 2006年第5期588-596,共9页
The orbital migration of Jovian planets is believed to have played an important role in shaping the Kuiper Belt. We investigate the effects of the long time-scale (2 ×107 yr) migration of Jovian planets on the ... The orbital migration of Jovian planets is believed to have played an important role in shaping the Kuiper Belt. We investigate the effects of the long time-scale (2 ×107 yr) migration of Jovian planets on the orbital evolution of massless test particles that are initially located beyond 28 AU. Because of the slowness of the migration, Neptune's mean motion resonances capture test particles very efficiently. Taking into account the stochastic behavior during the planetary migration and for proper parameter values, the resulting concentration of objects in the 3:2 resonance is prominent, while very few objects enter the 2:1 resonance, thus matching the observed Kuiper Belt objects very well. We also find that such a long time-scale migration is favorable for exciting the inclinations of the test particles, because it makes the secular resonance possible to operate during the migration. Our analyses show that the us secular resonance excites the eccentricities of some test particles, so decreasing their perihelion distances, leading to close encounters with Neptune, which can then pump the inclinations up to 20°. 展开更多
关键词 celestial mechanics -- Kuiper Belt -- methods numerical -- solar system formation
下载PDF
Jovian Planet Influence on the Forcing of Sunspot Cycles
3
作者 Fred J. Cadieu 《World Journal of Condensed Matter Physics》 CAS 2024年第1期1-9,共9页
The history of our solar system has been greatly influenced by the fact that there is a large gas giant planet, Jupiter that has a nearly circular orbit. This has allowed relics of the early solar system formation to ... The history of our solar system has been greatly influenced by the fact that there is a large gas giant planet, Jupiter that has a nearly circular orbit. This has allowed relics of the early solar system formation to still be observable today. Since Jupiter orbits the Sun with a period of approximately 12 years, it has always been thought that this could be connected to the nearly 11-year periodic peak in the number of sunspots observed. In this paper, the Sun and planets are considered to be moving about a center of mass point as the different planets orbit the Sun. This is the action of gravity that holds the solar system together. The center of mass for the Jupiter-Sun system actually lies outside the Sun. The four gas giant planets dominate such effects and the four gas giant Jovian planets can be projected together to determine an effective distance from the Sun’s center. Taken together these effects do seem to function as a sunspot forcing factor with a periodicity very close to 11 years. These predictions are made without consideration of any details of what is happening in the interior of the Sun. From these estimates, sunspot cycle 25 will be expected to peak in about September-October of 2025. Sunspot cycle 26 should peak in the year March of 2037. 展开更多
关键词 Sun Cycles solar system formation JUPITER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部