该文概述了卫星遥感积雪监测原理,介绍了积雪判识方法,对国家卫星气象中心已有的业务化极轨气象卫星冬季旬积雪监测算法和流程进行了改进。经过比对,设计了新的可见光太阳天顶角订正模式,针对NOAA-16/AVHRR3和FY-1D/MVISR重新确定了...该文概述了卫星遥感积雪监测原理,介绍了积雪判识方法,对国家卫星气象中心已有的业务化极轨气象卫星冬季旬积雪监测算法和流程进行了改进。经过比对,设计了新的可见光太阳天顶角订正模式,针对NOAA-16/AVHRR3和FY-1D/MVISR重新确定了积雪判识变量及相应的动态积雪检测阈值,提出了概率积雪判识方法,结合多光谱阈值法建立了概率结合阈值(Probability Combined with Threshold,PCT)的积雪判识方法,并以该算法为基础建立了新的业务化积雪动态遥感监测系统。同时,用新算法对部分历史产品重新做了处理,并简要分析了1996至2003年中国地区冬季积雪分布特征。展开更多
为了分析不同探测环境对卫星红外探测的影响,推导了倾斜探测路径下目标与背景在探测器入瞳处的辐照度对比度计算公式。计算了目标在海天背景下不同温度、不同高度、不同太阳天顶角、不同探测天顶角条件下,目标与背景在0.75~14μm波...为了分析不同探测环境对卫星红外探测的影响,推导了倾斜探测路径下目标与背景在探测器入瞳处的辐照度对比度计算公式。计算了目标在海天背景下不同温度、不同高度、不同太阳天顶角、不同探测天顶角条件下,目标与背景在0.75~14μm波段的红外单色辐射照度对比度。分析指出:太阳天顶角对红外探测的影响主要在2.7μm以下波段,探测波长大于2.7μm可不考虑太阳的影响。目标在5 km以下、探测天顶角在60°以上继续增加时,探测波段变窄,不可探频段增宽;目标在10 km 以上,探测天顶角变化对探测影响很小。这些结论可用于指导卫星红外探测波段选择与探测结果分析。展开更多
To improve the simulation of the surface radiation budget and related thermal processes in arid regions, three sophisticated surface albedo schemes designed for such regions were incorporated into the Biosphere- Atmos...To improve the simulation of the surface radiation budget and related thermal processes in arid regions, three sophisticated surface albedo schemes designed for such regions were incorporated into the Biosphere- Atmosphere Transfer Scheme (BATS). Two of these schemes are functions of the solar zenith angle (SZA), where the first one has one adjustable parameter defined as SZA1 scheme, and the second one has two empirical parameters defined as SZA2 scheme. The third albedo scheme is a function of solar angle and soil water that were developed based on arid-region observations from the Dunhuang field experiment (DHEX) (defined as DH scheme). We evaluated the performance of the original and newly-incorporated albedo schemes within BATS using the in-situ data from the Oasis System Energy and Water Cycle Field Experiment that was carried out in JinTa, Gansu arid area (JTEX). The results indicate that a control run by the original version of the BATS generates a constant albedo, while the SZA1 and SZA2 schemes basically can reproduce the observed diurnal cycle of surface albedo, although these two schemes still underestimate the albedo when SZA is high in the early morning and late afternoon, and overestimate it when SZA is low during noontime. The SZA2 scheme has a better overall performance than the SZA1 scheme. In addition, BATS with the DH scheme slightly improves the albedo simulation in magnitude as compared to that from the control run, but a diurnal cycle of albedo is not produced by this scheme. The SZA1 and SZA2 schemes significantly increase the surface absorbed solar radiation by nearly 70 W m^-2, which further raises the ground temperature by 6 K and the sensible heat flux by 35 W m^-2. The increased solar radiation, heat flux, and temperature are more consistent with the observations that those from the control run. However, a significant improvement in these three variables is not found in BATS with the DH scheme due to the neglect of the diurnal cycle of albedo. Further analysis indicates that during cloudy days the solar radiation simulations of BATS with these three schemes are not in a good agreement with the observations, which implies that a more realistic partitioning of diffuse and direct radiation is needed in future land surface process simulations.展开更多
The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala,Finland,and HYTFZ01,Huayun Tongda Satcom,China) was studied.Datasets were collected in the field at the Daxi...The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala,Finland,and HYTFZ01,Huayun Tongda Satcom,China) was studied.Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012.Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen.In most cases,the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield.The measured errors changed sharply at sunrise and sunset,and reached maxima at noon.Their diurnal variation characteristics were,naturally,related to changes in solar radiation.The relationships between the record errors,global radiation,and wind speed were nonlinear.An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05),in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively.Measurement errors were reduced significantly after correction by either method for both shields.The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method,respectively.展开更多
文摘该文概述了卫星遥感积雪监测原理,介绍了积雪判识方法,对国家卫星气象中心已有的业务化极轨气象卫星冬季旬积雪监测算法和流程进行了改进。经过比对,设计了新的可见光太阳天顶角订正模式,针对NOAA-16/AVHRR3和FY-1D/MVISR重新确定了积雪判识变量及相应的动态积雪检测阈值,提出了概率积雪判识方法,结合多光谱阈值法建立了概率结合阈值(Probability Combined with Threshold,PCT)的积雪判识方法,并以该算法为基础建立了新的业务化积雪动态遥感监测系统。同时,用新算法对部分历史产品重新做了处理,并简要分析了1996至2003年中国地区冬季积雪分布特征。
文摘为了分析不同探测环境对卫星红外探测的影响,推导了倾斜探测路径下目标与背景在探测器入瞳处的辐照度对比度计算公式。计算了目标在海天背景下不同温度、不同高度、不同太阳天顶角、不同探测天顶角条件下,目标与背景在0.75~14μm波段的红外单色辐射照度对比度。分析指出:太阳天顶角对红外探测的影响主要在2.7μm以下波段,探测波长大于2.7μm可不考虑太阳的影响。目标在5 km以下、探测天顶角在60°以上继续增加时,探测波段变窄,不可探频段增宽;目标在10 km 以上,探测天顶角变化对探测影响很小。这些结论可用于指导卫星红外探测波段选择与探测结果分析。
文摘To improve the simulation of the surface radiation budget and related thermal processes in arid regions, three sophisticated surface albedo schemes designed for such regions were incorporated into the Biosphere- Atmosphere Transfer Scheme (BATS). Two of these schemes are functions of the solar zenith angle (SZA), where the first one has one adjustable parameter defined as SZA1 scheme, and the second one has two empirical parameters defined as SZA2 scheme. The third albedo scheme is a function of solar angle and soil water that were developed based on arid-region observations from the Dunhuang field experiment (DHEX) (defined as DH scheme). We evaluated the performance of the original and newly-incorporated albedo schemes within BATS using the in-situ data from the Oasis System Energy and Water Cycle Field Experiment that was carried out in JinTa, Gansu arid area (JTEX). The results indicate that a control run by the original version of the BATS generates a constant albedo, while the SZA1 and SZA2 schemes basically can reproduce the observed diurnal cycle of surface albedo, although these two schemes still underestimate the albedo when SZA is high in the early morning and late afternoon, and overestimate it when SZA is low during noontime. The SZA2 scheme has a better overall performance than the SZA1 scheme. In addition, BATS with the DH scheme slightly improves the albedo simulation in magnitude as compared to that from the control run, but a diurnal cycle of albedo is not produced by this scheme. The SZA1 and SZA2 schemes significantly increase the surface absorbed solar radiation by nearly 70 W m^-2, which further raises the ground temperature by 6 K and the sensible heat flux by 35 W m^-2. The increased solar radiation, heat flux, and temperature are more consistent with the observations that those from the control run. However, a significant improvement in these three variables is not found in BATS with the DH scheme due to the neglect of the diurnal cycle of albedo. Further analysis indicates that during cloudy days the solar radiation simulations of BATS with these three schemes are not in a good agreement with the observations, which implies that a more realistic partitioning of diffuse and direct radiation is needed in future land surface process simulations.
基金financially supported by the Meteorological Key Technology Integration and Application Project funded by the China Meteorological Administration (Grant No.CAMGJ2012M01)the Special Fund of Beijing Meteorological Bureau (Grant No.2011BMBKYZX04)the Nation Natural Science Foundation of China (Grant No.41275114)
文摘The variation of air temperature measurement errors using two different radiation shields (DTR502B Vaisala,Finland,and HYTFZ01,Huayun Tongda Satcom,China) was studied.Datasets were collected in the field at the Daxing weather station in Beijing from June 2011 to May 2012.Most air temperature values obtained with these two commonly used radiation shields were lower than the reference records obtained with the new Fiber Reinforced Polymers (FRP) Stevenson screen.In most cases,the air temperature errors when using the two devices were smaller on overcast and rainy days than on sunny days; and smaller when using the imported rather than the Chinese shield.The measured errors changed sharply at sunrise and sunset,and reached maxima at noon.Their diurnal variation characteristics were,naturally,related to changes in solar radiation.The relationships between the record errors,global radiation,and wind speed were nonlinear.An improved correction method was proposed based on the approach described by Nakamura and Mahrt (2005) (NM05),in which the impact of the solar zenith angle (SZA) on the temperature error is considered and extreme errors due to changes in SZA can be corrected effectively.Measurement errors were reduced significantly after correction by either method for both shields.The error reduction rate using the improved correction method for the Chinese and imported shields were 3.3% and 40.4% higher than those using the NM05 method,respectively.