The scuffing behavior of hybrid ceramic bearing lubricated with solid is greatly affected by the contact flash temperature. Formulas are dedused using Lee’s asperity flash temperature method, to calculate the flash t...The scuffing behavior of hybrid ceramic bearing lubricated with solid is greatly affected by the contact flash temperature. Formulas are dedused using Lee’s asperity flash temperature method, to calculate the flash temperature of ball bearing lubricated with solid. The maximum flash temperature is calculated for hybrid ceramic ball bearings. The results show that under given conditions, the flash temperature of inner race is higher than that of outer race, the flash temperature of the hybrid ceramic bearing is sensitive to the load, rotational speed and race curvature. The flash temperature of inner race at 20 000 r/min is 66 9% more than that that at 11 000 r/min, and with the load changing from 1.1 kN to 2 kN, the flash temperature inner race goes up to 165 7%. Very common for high speed ball bearings, when curvature coefficients of both inner and outer race change from 0 515 to 0 56, the inner race flash temperature decreases from 421 446℃ to 56 2℃.展开更多
An efficient catalyst SO4^2--TiO2(ST) from industrial metatitanic acid has been successfully prepared to catalyze hydrolysis of ball-milling cellulose. The results show that the highest catalytic efficiency is obtaine...An efficient catalyst SO4^2--TiO2(ST) from industrial metatitanic acid has been successfully prepared to catalyze hydrolysis of ball-milling cellulose. The results show that the highest catalytic efficiency is obtained for ST calcined at 450 ℃(ST-450) with the yield of 21.8% glucose, 13.0% 5-HMF and 4.2% furfural at 200 ℃ for30 min. The ball milling of cellulose and solid acid catalyst significantly enhances the cellulose hydrolysis. The high Lewis to Bronsted acid sites ratio for ST-450 induced by bidentate ligands between SO4^2-and TiO2 benefits high organics yield, and high total acid sites contribute to the high cellulose conversion. The large pore volume of 0.29 cm^3·g^-1 and appropriate pore size of 7.35 nm of ST-450 also contribute to the high performance. High reaction temperature over 200 ℃ exhibits negative effect on glucose and 5-HMF yield due to undesired side reactions, while furfural product is stable in the reaction system. The bidentate ligands between SO4^2-and TiO2 are considered as active acid sites for cellulose hydrolysis in water–ethanol solvents.展开更多
Nanosized Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions(x = 0.00-0.20) were synthesized by means of hydrothermal method.Then the solid solutions were ball milled with Mg2Ni and Ni powders for 20 h to get the...Nanosized Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions(x = 0.00-0.20) were synthesized by means of hydrothermal method.Then the solid solutions were ball milled with Mg2Ni and Ni powders for 20 h to get the Mg2Ni–Ni–5 mol% Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) composites.The structures and spectrum characteristics of the Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions catalysts were analyzed systemically.XRD results showed that the doped samples exhibited single phase of CeO2 fluorite structure.The cell parameters and cell volumes were increased with increasing the doped content.Raman spectrum revealed that the peak position of F^2g mode shift to higher wavenumbers and the peak corresponding to oxygen vacancies were observed distinctly for the doped samples.UV-Vis technique indicated that the absorption peaks of Eu^3+ and Nd^3+ ions appeared; the bandgap energy was decreased linearly.The electrochemical and kinetic properties of the Mg2Ni–Ni–5 mol% Ce1-x(Nd0.5Eu0.5xO2-δ composites were measured.The maximum discharge capacity was increased from 722.3 mA h/g for x = 0.00 to 819.7 mA h/g for x = 0.16,and the cycle stability S20 increased from 25.0%(x = 0.00) to 42.2%(x = 0.20).The kinetic measurement proved that the catalytic activity of composite surfaces and the hydrogen diffusion rate were improved for the composites with doped catalysts,especially for the composites with x = 0.16 and x = 0.20.The catalysis mechanism was analyzed from the point of microstructure and spectrum features of the Ce1-x(Nd0.5Eu0.5)xO2-δ solid solutions.展开更多
We fabricated a silver ion emitter based on the solid state electrolyte film of RbAg4 I5 prepared by pulsed laser deposition. The RbAg4 I5 target for PLD process was mechano-chemically synthesized by high-energy ball ...We fabricated a silver ion emitter based on the solid state electrolyte film of RbAg4 I5 prepared by pulsed laser deposition. The RbAg4 I5 target for PLD process was mechano-chemically synthesized by high-energy ball milling in Ar atmosphere using β-AgI and RbI as raw materials. The ion-conducting properties of RbAg4 I5 were studied by alternating current(AC) impedance spectroscopy and the ionic conductivity at room temperature was estimated 0.21 S/m. The structure, morphology, and elemental composition of the RbAg4 I5 film were investigated. The Ag+ ion-conducting property of the prepared superioni-conductor film was exploited for ion–beam generation. The temperature and accelerating voltage dependences of the ion current were studied. Few nA current was obtained at the temperature of 196?C and the accelerating voltage of 10 kV.展开更多
Ball-end mill is widely used in workpiece processi ng with free-form surfaces. Such models that can predict processing character istics precisely are very necessary to the aim of cost reducing, quality improvi ng and ...Ball-end mill is widely used in workpiece processi ng with free-form surfaces. Such models that can predict processing character istics precisely are very necessary to the aim of cost reducing, quality improvi ng and productivity progressing, the cutting force prediction is the most import ant among these models. To explore the physical essence of metal cutting, model researchers commonly simplify the geometric conditions in cutting process, and a ssume that the geometric parameters that are needed to solve the physical models have already been predefined, so it results in the separation between model res earch and practical application. In this paper, for the representative cutting f orce models of ball end milling, a new extraction method of geometric parameters is suggested, which makes it possible for physical model to actually serve for the practical manufacturing, and take in the inspection of real production.展开更多
文摘The scuffing behavior of hybrid ceramic bearing lubricated with solid is greatly affected by the contact flash temperature. Formulas are dedused using Lee’s asperity flash temperature method, to calculate the flash temperature of ball bearing lubricated with solid. The maximum flash temperature is calculated for hybrid ceramic ball bearings. The results show that under given conditions, the flash temperature of inner race is higher than that of outer race, the flash temperature of the hybrid ceramic bearing is sensitive to the load, rotational speed and race curvature. The flash temperature of inner race at 20 000 r/min is 66 9% more than that that at 11 000 r/min, and with the load changing from 1.1 kN to 2 kN, the flash temperature inner race goes up to 165 7%. Very common for high speed ball bearings, when curvature coefficients of both inner and outer race change from 0 515 to 0 56, the inner race flash temperature decreases from 421 446℃ to 56 2℃.
基金Supported by the Key Program of National Natural Science Foundation of China(No.21336008).
文摘An efficient catalyst SO4^2--TiO2(ST) from industrial metatitanic acid has been successfully prepared to catalyze hydrolysis of ball-milling cellulose. The results show that the highest catalytic efficiency is obtained for ST calcined at 450 ℃(ST-450) with the yield of 21.8% glucose, 13.0% 5-HMF and 4.2% furfural at 200 ℃ for30 min. The ball milling of cellulose and solid acid catalyst significantly enhances the cellulose hydrolysis. The high Lewis to Bronsted acid sites ratio for ST-450 induced by bidentate ligands between SO4^2-and TiO2 benefits high organics yield, and high total acid sites contribute to the high cellulose conversion. The large pore volume of 0.29 cm^3·g^-1 and appropriate pore size of 7.35 nm of ST-450 also contribute to the high performance. High reaction temperature over 200 ℃ exhibits negative effect on glucose and 5-HMF yield due to undesired side reactions, while furfural product is stable in the reaction system. The bidentate ligands between SO4^2-and TiO2 are considered as active acid sites for cellulose hydrolysis in water–ethanol solvents.
基金supported by the National Natural Science Foundations of China(51501095,51371094)the Natural Science Foundation of Inner Mongolia(2017MS(LH)0516)
文摘Nanosized Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions(x = 0.00-0.20) were synthesized by means of hydrothermal method.Then the solid solutions were ball milled with Mg2Ni and Ni powders for 20 h to get the Mg2Ni–Ni–5 mol% Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) composites.The structures and spectrum characteristics of the Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions catalysts were analyzed systemically.XRD results showed that the doped samples exhibited single phase of CeO2 fluorite structure.The cell parameters and cell volumes were increased with increasing the doped content.Raman spectrum revealed that the peak position of F^2g mode shift to higher wavenumbers and the peak corresponding to oxygen vacancies were observed distinctly for the doped samples.UV-Vis technique indicated that the absorption peaks of Eu^3+ and Nd^3+ ions appeared; the bandgap energy was decreased linearly.The electrochemical and kinetic properties of the Mg2Ni–Ni–5 mol% Ce1-x(Nd0.5Eu0.5xO2-δ composites were measured.The maximum discharge capacity was increased from 722.3 mA h/g for x = 0.00 to 819.7 mA h/g for x = 0.16,and the cycle stability S20 increased from 25.0%(x = 0.00) to 42.2%(x = 0.20).The kinetic measurement proved that the catalytic activity of composite surfaces and the hydrogen diffusion rate were improved for the composites with doped catalysts,especially for the composites with x = 0.16 and x = 0.20.The catalysis mechanism was analyzed from the point of microstructure and spectrum features of the Ce1-x(Nd0.5Eu0.5)xO2-δ solid solutions.
基金Project supported by the National Natural Science Foundation of China(Grant No.11875210)China Postdoctoral Science Foundation(Grant No.2018M640724)+1 种基金the International Cooperation Program of Guangdong Provincial Science and Technology Plan Project(Grant No.2018A050506082)the Talent Project of Lingnan Normal University,China(Grant No.ZL1931)
文摘We fabricated a silver ion emitter based on the solid state electrolyte film of RbAg4 I5 prepared by pulsed laser deposition. The RbAg4 I5 target for PLD process was mechano-chemically synthesized by high-energy ball milling in Ar atmosphere using β-AgI and RbI as raw materials. The ion-conducting properties of RbAg4 I5 were studied by alternating current(AC) impedance spectroscopy and the ionic conductivity at room temperature was estimated 0.21 S/m. The structure, morphology, and elemental composition of the RbAg4 I5 film were investigated. The Ag+ ion-conducting property of the prepared superioni-conductor film was exploited for ion–beam generation. The temperature and accelerating voltage dependences of the ion current were studied. Few nA current was obtained at the temperature of 196?C and the accelerating voltage of 10 kV.
文摘Ball-end mill is widely used in workpiece processi ng with free-form surfaces. Such models that can predict processing character istics precisely are very necessary to the aim of cost reducing, quality improvi ng and productivity progressing, the cutting force prediction is the most import ant among these models. To explore the physical essence of metal cutting, model researchers commonly simplify the geometric conditions in cutting process, and a ssume that the geometric parameters that are needed to solve the physical models have already been predefined, so it results in the separation between model res earch and practical application. In this paper, for the representative cutting f orce models of ball end milling, a new extraction method of geometric parameters is suggested, which makes it possible for physical model to actually serve for the practical manufacturing, and take in the inspection of real production.