CO_(2) electrolysis with solid oxide electrolytic cells(SOECs)using intermittently available renewable energy has potential applications for carbon neutrality and energy storage.In this study,a pulsed current strategy...CO_(2) electrolysis with solid oxide electrolytic cells(SOECs)using intermittently available renewable energy has potential applications for carbon neutrality and energy storage.In this study,a pulsed current strategy is used to replicate intermittent energy availability,and the stability and conversion rate of the cyclic operation by a large-scale flat-tube SOEC are studied.One hundred cycles under pulsed current ranging from -100 to -300 mA/cm^(2) with a total operating time of about 800 h were carried out.The results show that after 100 cycles,the cell voltage attenuates by 0.041%/cycle in the high current stage of−300 mA/cm^(2),indicating that the lifetime of the cell can reach up to about 500 cycles.The total CO_(2) conversion rate reached 52%,which is close to the theoretical value of 54.3% at -300 mA/cm^(2),and the calculated efficiency approached 98.2%,assuming heat recycling.This study illustrates the significant advantages of SOEC in efficient electrochemical energy conversion,carbon emission mitigation,and seasonal energy storage.展开更多
A new type of a high temperature liquid metal-air energy storage cell based on solid oxide electrolyte has been successfully demonstrated at 750 ℃ by feeding metal Sn. In order to understanding the initial size effec...A new type of a high temperature liquid metal-air energy storage cell based on solid oxide electrolyte has been successfully demonstrated at 750 ℃ by feeding metal Sn. In order to understanding the initial size effect of metal as a liquid fuel, we report here the impact of the thermal and electrochemical oxidation behavior of nano Sn (-100 nm), comparing with micro-sized (-5 μm) and macro-sized (4350 μm) Sn. The thermogravimetric analysis and the monitoring OCV test indicate that the distinct property of nano-sized Sn results in a favorable thermal oxidation behavior near the melting point and a promising power performance due to enhanced fuel transport to the anode. However, the accumulated Sn oxide at the reaction interface during a discharge test towards the limitation of further electrochemical oxidation.展开更多
Inkjet printing is a promising alternative for the fabrication of thin film components for solid oxide fuel cells(SOFCs) due to its contactless, mask free, and controllable printing process. In order to obtain satisfy...Inkjet printing is a promising alternative for the fabrication of thin film components for solid oxide fuel cells(SOFCs) due to its contactless, mask free, and controllable printing process. In order to obtain satisfying electrolyte thin layer structures in anode-supported SOFCs, the preparation of suitable electrolyte ceramic inks is a key. At present, such a kind of 8 mol% Y_(2)O_(3)-stabilized ZrO_(2)(8 YSZ) electrolyte ceramic ink with long-term stability and high solid loading(> 15 wt%) seems rare for precise inkjet printing, and a number of characterization and performance aspects of the inks, such as homogeneity, viscosity, and printability, should be studied. In this study, 8 YSZ ceramic inks of varied compositions were developed for inkjet printing of SOFC ceramic electrolyte layers. The dispersing effect of two types of dispersants, i.e., polyacrylic acid ammonium(PAANH4) and polyacrylic acid(PAA), were compared. The results show that ultrasonic dispersion treatment can help effectively disperse the ceramic particles in the inks. PAANH4 has a better dispersion effect for the inks developed in this study. The inks show excellent printable performance in the actual printing process. The stability of the ink can be maintained for a storage period of over 30 days with the help of initial ultrasonic dispersion. Finally, micron-size thin 8 YSZ electrolyte films were successfully fabricated through inkjet printing and sintering, based on the as-developed high solid loading 8 YSZ inks(20 wt%). The films show fully dense and intact structural morphology and smooth interfacial bonding, offering an improved structural quality of electrolyte for enhanced SOFC performance.展开更多
基金National Key Research&Development Project,Grant/Award Number:2017YFE0129300Ningbo Science and Technology Innovation 2025 Major Project,Grant/Award Numbers:2019B10046,2020Z107+2 种基金Zhejiang Provincial Key R&D Program,Grant/Award Number:2021C01101National Natural Science Foundation of China,Grant/Award Numbers:U20A20251,11932005The from 0 to 1 Innovative Program of CAS,Grant/Award Number:ZDBS-LY-JSC021。
文摘CO_(2) electrolysis with solid oxide electrolytic cells(SOECs)using intermittently available renewable energy has potential applications for carbon neutrality and energy storage.In this study,a pulsed current strategy is used to replicate intermittent energy availability,and the stability and conversion rate of the cyclic operation by a large-scale flat-tube SOEC are studied.One hundred cycles under pulsed current ranging from -100 to -300 mA/cm^(2) with a total operating time of about 800 h were carried out.The results show that after 100 cycles,the cell voltage attenuates by 0.041%/cycle in the high current stage of−300 mA/cm^(2),indicating that the lifetime of the cell can reach up to about 500 cycles.The total CO_(2) conversion rate reached 52%,which is close to the theoretical value of 54.3% at -300 mA/cm^(2),and the calculated efficiency approached 98.2%,assuming heat recycling.This study illustrates the significant advantages of SOEC in efficient electrochemical energy conversion,carbon emission mitigation,and seasonal energy storage.
基金the financial support from the R&D Convergence Program of NST (National Research Council of Science & Technology) of Republic of Korea
文摘A new type of a high temperature liquid metal-air energy storage cell based on solid oxide electrolyte has been successfully demonstrated at 750 ℃ by feeding metal Sn. In order to understanding the initial size effect of metal as a liquid fuel, we report here the impact of the thermal and electrochemical oxidation behavior of nano Sn (-100 nm), comparing with micro-sized (-5 μm) and macro-sized (4350 μm) Sn. The thermogravimetric analysis and the monitoring OCV test indicate that the distinct property of nano-sized Sn results in a favorable thermal oxidation behavior near the melting point and a promising power performance due to enhanced fuel transport to the anode. However, the accumulated Sn oxide at the reaction interface during a discharge test towards the limitation of further electrochemical oxidation.
基金supported by the National Natural Science Foundation of China (51975384)Guangdong Basic and Applied Basic Research Foundation (2020A1515011547)+1 种基金Natural Science Foundation of Shenzhen (JCYJ20190808144009478)Key-Area Research and Development Program of Guangdong Province (2020B090924003)。
文摘Inkjet printing is a promising alternative for the fabrication of thin film components for solid oxide fuel cells(SOFCs) due to its contactless, mask free, and controllable printing process. In order to obtain satisfying electrolyte thin layer structures in anode-supported SOFCs, the preparation of suitable electrolyte ceramic inks is a key. At present, such a kind of 8 mol% Y_(2)O_(3)-stabilized ZrO_(2)(8 YSZ) electrolyte ceramic ink with long-term stability and high solid loading(> 15 wt%) seems rare for precise inkjet printing, and a number of characterization and performance aspects of the inks, such as homogeneity, viscosity, and printability, should be studied. In this study, 8 YSZ ceramic inks of varied compositions were developed for inkjet printing of SOFC ceramic electrolyte layers. The dispersing effect of two types of dispersants, i.e., polyacrylic acid ammonium(PAANH4) and polyacrylic acid(PAA), were compared. The results show that ultrasonic dispersion treatment can help effectively disperse the ceramic particles in the inks. PAANH4 has a better dispersion effect for the inks developed in this study. The inks show excellent printable performance in the actual printing process. The stability of the ink can be maintained for a storage period of over 30 days with the help of initial ultrasonic dispersion. Finally, micron-size thin 8 YSZ electrolyte films were successfully fabricated through inkjet printing and sintering, based on the as-developed high solid loading 8 YSZ inks(20 wt%). The films show fully dense and intact structural morphology and smooth interfacial bonding, offering an improved structural quality of electrolyte for enhanced SOFC performance.