Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model.The effect of pore air pressure on rainfall infiltration has been widely recogn...Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model.The effect of pore air pressure on rainfall infiltration has been widely recognized and validated by means of numerical simulations and laboratory experiments.However,whether a slope can actually seal pore air continues to be debated by researchers.In this study,a water-air two-phase flow model is used to simulate the rainfall infiltration process on a soil slope,and a field experiment is conducted to realistically test the sealing conditions of a slope.According to the numerical simulation,the areas of water and air flow in and out on the slope surface are relatively stable and can be classified as the“inhalation zone”and“overflow zone”,respectively.Intermittent rainfall on the soil slope has an amplifying effect on pore air pressure because rainfall intensity is usually at the millimeter level,and it causes pore air pressure to reach the cm level.A field experiment was performed to determine whether a slope can realistically seal pore air and subsequently verify the regularity of rainfall infiltration.Air pressure sensors were buried in the slope to monitor the pore air pressures during the rainfall process.The monitoring results show that the pore air pressure in the slope changed,which indicates that the slope can seal air.Moreover,the amplification effects of intermittent rainfall on pore air pressure were observed for natural rainfall,which agrees well with the numerical simulation results.展开更多
Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide ...Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines, controlling contamination of mine water, and accomplishing ecological restoration of mining areas. A typical physical model of the layered structures with porous and fractured media was created in this study. Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure. The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time. The experimental results showed that the lower fractured media, with a considerably higher permeability than that of the upper porous media, had significant effects on preventing water infil- tration. Moreover, although the porous media were homogeneous statistically in the whole domain, spatial variations in the features of effluent concentrations with regards to time, or so called breakthrough curves, at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed, indicating the diversity of solute transport at small scales. Furthermore, the breakthrough curves of the outflow at the bottom, located beneath the underlying fractured rock, were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media, which exhibited multiple peaks, while the peak values were reduced one by one with time.展开更多
Minimizing parameter uncertainty is crucial in the application of hydrologic models.Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water flow in th...Minimizing parameter uncertainty is crucial in the application of hydrologic models.Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water flow in the system,provide additional information for parameter estimation,and improve parameter identifiability.This study combined the Philip infiltration model with an isotopic mixing model using an isotopic mass balance approach for estimating parameters in the Philip infiltration model.Two approaches to parameter estimation were compared:(a) using isotopic information to determine the soil water transmission and then hydrologic information to estimate the soil sorptivity,and(b) using hydrologic information to determine the soil water transmission and the soil sorptivity.Results of parameter estimation were verified through a rainfall infiltration experiment in a laboratory under rainfall with constant isotopic compositions and uniform initial soil water content conditions.Experimental results showed that approach(a),using isotopic and hydrologic information,estimated the soil water transmission in the Philip infiltration model in a manner that matched measured values well.The results of parameter estimation of approach(a) were better than those of approach(b).It was also found that the analytical precision of hydrogen and oxygen stable isotopes had a significant effect on parameter estimation using isotopic information.展开更多
With liquid petrol gas(LPG)as carbon source,carbon felt as porous perform and hydrogen as diluent,C/C composites were fast fabricated by using a multi-physics field chemical vapor infiltration(MFCVI)process in a self-...With liquid petrol gas(LPG)as carbon source,carbon felt as porous perform and hydrogen as diluent,C/C composites were fast fabricated by using a multi-physics field chemical vapor infiltration(MFCVI)process in a self-made furnace.A set of orthogonal experiments were carried out to optimize parameters in terms of indices of density and graphitization degree.The results show the optimal indices can be achieved under the conditions of temperature 650℃,LPGconcentration 80%,gas flux 60 mL/s, total pressure 20 kPa,infiltration time 15 h.The verification experiment proves the effectiveness of the orthogonal experiments. Under the optimal conditions,the graphitization degree of 75%and bulk density of 1.69 g/cm are achieved with a uniform density distribution.At the same time,a new structure is obtained.展开更多
In Japan, floods occur frequently in urban areas because non-infiltrating areas are seeing increased urbanization. To prevent floods, urban basins must improve the infiltration capacity and water retention of the whol...In Japan, floods occur frequently in urban areas because non-infiltrating areas are seeing increased urbanization. To prevent floods, urban basins must improve the infiltration capacity and water retention of the whole basin. There are several basic technologies for river basin management, such as infiltration trenches or rainwater storage. However, a method of soil amendment that prevents flood disasters has not been established. This study aims to evaluate the infiltration capacity of soil amendments using bamboo charcoal and humus. A constant-head infiltration test and rainfall simulation were conducted to evaluate the properties of the soil amendments. The constant-head infiltration test's results showed that soils mixed with 30% humus had the greatest potential for influencing initial and final infiltration rates, and the more the mixing rates of bamboo charcoal and humus were increased, the higher the water retention capacity. The results of the rainfall simulation showed that soils mixed with 30% humus had the highest final infiltration rates and lowest multiplication spillage. To reduce the runoff volume using soil amendment technology, it is important to delay overland flow, and the hydraulic properties of the soils mixed with bamboo charcoal and humus were as effective as those of granite soils.展开更多
Investigation of infiltration through unsaturated zone which consists of both porous and fractured media is important for comprehensively understanding water circulation and effectively man- aging groundwater resource...Investigation of infiltration through unsaturated zone which consists of both porous and fractured media is important for comprehensively understanding water circulation and effectively man- aging groundwater resources and contamination control. Infiltration experiments for three kinds of porous-fractured layered structures were conducted with application of a rainfall simulator in this in- vestigation. During experiments, the volumetric water contents of porous media and on the interface of porous-fractured media were monitored by moisture sensors (TDT). The infiltration rate, water amount in the profile and on the interface between the soil and the fractured bedrock, and outflow from the layered structures were analyzed to identify the effects of porous-fractured interface on water movement in the upper porous media and the effects of various kinds of porous media on infiltration in fractured rocks. It has been observed from the experiment results that the porous media and the frac- tured rock bear considerable reciprocal impact each other on infiltration processes and water content distribution. The results showed fractured rock prevented vertical water movement in the layered structure, and it decreases infiltration rate of layered structure and slows the process for upper porous media saturation.展开更多
基金sponsored by The National Natural Science Foundation of China(Grant Nos.51939004 and 51279090)The National Key Research and Development Program of China(2017YFC1501100)the Hubei Key Laboratory of Construction and Management in Hydropower Engineering(2020KSD11).
文摘Rainfall infiltration on a soil slope is usually an unsaturated seepage process that can be described by a water-air two-phase flow model.The effect of pore air pressure on rainfall infiltration has been widely recognized and validated by means of numerical simulations and laboratory experiments.However,whether a slope can actually seal pore air continues to be debated by researchers.In this study,a water-air two-phase flow model is used to simulate the rainfall infiltration process on a soil slope,and a field experiment is conducted to realistically test the sealing conditions of a slope.According to the numerical simulation,the areas of water and air flow in and out on the slope surface are relatively stable and can be classified as the“inhalation zone”and“overflow zone”,respectively.Intermittent rainfall on the soil slope has an amplifying effect on pore air pressure because rainfall intensity is usually at the millimeter level,and it causes pore air pressure to reach the cm level.A field experiment was performed to determine whether a slope can realistically seal pore air and subsequently verify the regularity of rainfall infiltration.Air pressure sensors were buried in the slope to monitor the pore air pressures during the rainfall process.The monitoring results show that the pore air pressure in the slope changed,which indicates that the slope can seal air.Moreover,the amplification effects of intermittent rainfall on pore air pressure were observed for natural rainfall,which agrees well with the numerical simulation results.
基金Supported by ihe Major State Basic Research Development Program of China (973 Program) (2010CB428801, 2010CB428804) the National Science Foundation of China (40972166)+1 种基金 the Major Science and Technology Program for Water Pollution Control and Treatment (2009ZX07212-003) the Technology Development and Applications for Ecology System Reconstruction and Restoration of Yongding River (D08040903700000)
文摘Layered structures with upper porous and lower fractured media are widely distributed in the world. An experimen- tal investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines, controlling contamination of mine water, and accomplishing ecological restoration of mining areas. A typical physical model of the layered structures with porous and fractured media was created in this study. Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure. The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time. The experimental results showed that the lower fractured media, with a considerably higher permeability than that of the upper porous media, had significant effects on preventing water infil- tration. Moreover, although the porous media were homogeneous statistically in the whole domain, spatial variations in the features of effluent concentrations with regards to time, or so called breakthrough curves, at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed, indicating the diversity of solute transport at small scales. Furthermore, the breakthrough curves of the outflow at the bottom, located beneath the underlying fractured rock, were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media, which exhibited multiple peaks, while the peak values were reduced one by one with time.
基金supported by the National Natural Science Foundation of China(Grant No.51279057)
文摘Minimizing parameter uncertainty is crucial in the application of hydrologic models.Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water flow in the system,provide additional information for parameter estimation,and improve parameter identifiability.This study combined the Philip infiltration model with an isotopic mixing model using an isotopic mass balance approach for estimating parameters in the Philip infiltration model.Two approaches to parameter estimation were compared:(a) using isotopic information to determine the soil water transmission and then hydrologic information to estimate the soil sorptivity,and(b) using hydrologic information to determine the soil water transmission and the soil sorptivity.Results of parameter estimation were verified through a rainfall infiltration experiment in a laboratory under rainfall with constant isotopic compositions and uniform initial soil water content conditions.Experimental results showed that approach(a),using isotopic and hydrologic information,estimated the soil water transmission in the Philip infiltration model in a manner that matched measured values well.The results of parameter estimation of approach(a) were better than those of approach(b).It was also found that the analytical precision of hydrogen and oxygen stable isotopes had a significant effect on parameter estimation using isotopic information.
基金Projects(5080211550721003)supported by the National Natural Science Foundation of ChinaProject(2006CB600901)supported by the National Basic Research Program of China
文摘With liquid petrol gas(LPG)as carbon source,carbon felt as porous perform and hydrogen as diluent,C/C composites were fast fabricated by using a multi-physics field chemical vapor infiltration(MFCVI)process in a self-made furnace.A set of orthogonal experiments were carried out to optimize parameters in terms of indices of density and graphitization degree.The results show the optimal indices can be achieved under the conditions of temperature 650℃,LPGconcentration 80%,gas flux 60 mL/s, total pressure 20 kPa,infiltration time 15 h.The verification experiment proves the effectiveness of the orthogonal experiments. Under the optimal conditions,the graphitization degree of 75%and bulk density of 1.69 g/cm are achieved with a uniform density distribution.At the same time,a new structure is obtained.
文摘In Japan, floods occur frequently in urban areas because non-infiltrating areas are seeing increased urbanization. To prevent floods, urban basins must improve the infiltration capacity and water retention of the whole basin. There are several basic technologies for river basin management, such as infiltration trenches or rainwater storage. However, a method of soil amendment that prevents flood disasters has not been established. This study aims to evaluate the infiltration capacity of soil amendments using bamboo charcoal and humus. A constant-head infiltration test and rainfall simulation were conducted to evaluate the properties of the soil amendments. The constant-head infiltration test's results showed that soils mixed with 30% humus had the greatest potential for influencing initial and final infiltration rates, and the more the mixing rates of bamboo charcoal and humus were increased, the higher the water retention capacity. The results of the rainfall simulation showed that soils mixed with 30% humus had the highest final infiltration rates and lowest multiplication spillage. To reduce the runoff volume using soil amendment technology, it is important to delay overland flow, and the hydraulic properties of the soils mixed with bamboo charcoal and humus were as effective as those of granite soils.
基金supported by the Major State Basic Research Development Program of China(973 Program)(No.2010CB428804)the National Natural Science Foundation of China(No.40972166)the Major Science and Technology Program for Water Pollution Control and Treatment of China(No.2009ZX07212-003)
文摘Investigation of infiltration through unsaturated zone which consists of both porous and fractured media is important for comprehensively understanding water circulation and effectively man- aging groundwater resources and contamination control. Infiltration experiments for three kinds of porous-fractured layered structures were conducted with application of a rainfall simulator in this in- vestigation. During experiments, the volumetric water contents of porous media and on the interface of porous-fractured media were monitored by moisture sensors (TDT). The infiltration rate, water amount in the profile and on the interface between the soil and the fractured bedrock, and outflow from the layered structures were analyzed to identify the effects of porous-fractured interface on water movement in the upper porous media and the effects of various kinds of porous media on infiltration in fractured rocks. It has been observed from the experiment results that the porous media and the frac- tured rock bear considerable reciprocal impact each other on infiltration processes and water content distribution. The results showed fractured rock prevented vertical water movement in the layered structure, and it decreases infiltration rate of layered structure and slows the process for upper porous media saturation.