Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness an...Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al com- posite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphol- ogies, chemical compositions, and microstructures of the graphene and the graphene/A1 composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.展开更多
Using results from various reactions that populate 10He, I conclude that the ground state has E2n = 1.07(7) MeV and the excited 0+ state is in the region of 2.1-3.1 MeV. The amount of the (sd)2 component in the g...Using results from various reactions that populate 10He, I conclude that the ground state has E2n = 1.07(7) MeV and the excited 0+ state is in the region of 2.1-3.1 MeV. The amount of the (sd)2 component in the ground state is less than about 0.075.展开更多
The uncertainty of standard solution plays an important role in detection of pesticide residues. It may affect the accuracy of detection results. In this study, the 14 organophosphorus pesticides mixed standard soluti...The uncertainty of standard solution plays an important role in detection of pesticide residues. It may affect the accuracy of detection results. In this study, the 14 organophosphorus pesticides mixed standard solution was used as the material to analyze all the influencing factors for the preparation of mixed standard solution with uncertainty as the only judging index. The preparation uncertainty of mixed standard solution was calculated with the top-down calculation method. In the end, the expanded uncertainty was presented. The results showed that the preparation of mixed standard solution from stock solution with precise pipettes had a relatively low uncertainty.展开更多
A novel utilization way of the sludge from wet calcium-based flue gas desulfurization (FGD) processes has been developed in this paper. This study focused on the conversion of the FGD gypsum into α-hemihydrate calc...A novel utilization way of the sludge from wet calcium-based flue gas desulfurization (FGD) processes has been developed in this paper. This study focused on the conversion of the FGD gypsum into α-hemihydrate calcium sulfate by a hydrothermal salt solution method at atmospheric pressure. Experimental study has been carried out in a batch reactor. Qualitative and quantitative analyses were made by DSC/TG thermal analysis, SEM, XRD, metalloscope and chemical analysis. The experimental results showed that the modification of FGD gypsum was controlled by the dissolution and recrystallization mechanisms. With the introduction of FGD gypsum the salt solution was supersaturated, then crystal nucleus of α-hemihydrate calcium sulfate were produced in the solution. With the submicroscopic structure of FGD gypsum crystal changed, the crystal nucleus grew up into α-hemihydrate calcium sulfate crystals. Thus ,the modification of FGD gypsum was fulfilled.展开更多
The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predi...The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predict water activities of 56 ternary aqueous solutions in terms of the data of their binary subsystems. Both equation of Patwardhan and Kumar and the linear isopiestic relation can provide good predictions for water activities of the present 40 electrolyte solutions, and the linear isopiestic relation generally yields better predictions. The predictions of the extended equation of Patwardhan and Kumar and the linear isopiestic relation are in general quite reasonable for the present 8 ternary solutions of electrolytes and non-electrolytes, and the results of the linear isopiestic relation are usually better. The predictions of these two methods generally agree well with the experimental data for the 8 non-electrolyte mixtures being studied, and the linear isopiestic relation is better.展开更多
We gave the localized solutions,the interaction solutions and the mixed solutions to a reduced(3+1)-dimensional nonlinear evolution equation.These solutions were characterized by superposition formulas of positive qua...We gave the localized solutions,the interaction solutions and the mixed solutions to a reduced(3+1)-dimensional nonlinear evolution equation.These solutions were characterized by superposition formulas of positive quadratic functions,the exponential and hyperbolic functions.According to the known lump solution in the outset,we obtained the superposition formulas of positive quadratic functions by plausible reasoning.Next,we constructed the interaction solutions between the localized solutions and the exponential function solutions with the similar theory.These two kinds of solutions contained superposition formulas of positive quadratic functions,which were turned into general ternary quadratic functions,the coefficients of which were all rational operation of vector inner product.Then we obtained linear superposition formulas of exponential and hyperbolic function solutions.Finally,for aforementioned various solutions,their dynamic properties were showed by choosing specific values for parameters.From concrete plots,we observed wave characteristics of three kinds of solutions.Especially,we could observe distinct generation and separation situations when the localized wave and the stripe wave interacted at different time points.展开更多
N-soliton solutions in the Wronskian form for the KdV equation with loss and nonuniformity terms were obtained. New rational-like solutions and mixed solutions were further derived. All these solutions were verified b...N-soliton solutions in the Wronskian form for the KdV equation with loss and nonuniformity terms were obtained. New rational-like solutions and mixed solutions were further derived. All these solutions were verified by direct substitutions into bilinear equation.展开更多
The mixed solutions of the derivative nonlinear Schrödinger equation from the trivial seed (zero solution) are derived by using the determinant representation. By adjusting the interaction and degeneracy of m...The mixed solutions of the derivative nonlinear Schrödinger equation from the trivial seed (zero solution) are derived by using the determinant representation. By adjusting the interaction and degeneracy of mixed solutions, it is possible to obtain different types of solutions: phase solutions, breather solutions, phase-breather solutions and rogue waves.展开更多
The general bright-dark mixed N-soliton solution of the two-dimensional Maccari system is obtained with the KP hierarchy reduction method. The dynamics of single and two solitons are discussed in detail. Asymptotic an...The general bright-dark mixed N-soliton solution of the two-dimensional Maccari system is obtained with the KP hierarchy reduction method. The dynamics of single and two solitons are discussed in detail. Asymptotic analysis shows that two solitons undergo elastic collision accompanied by a position shift. Furthermore, our analysis on mixed soliton bound states shows that arbitrary higher-order soliton bound states can take place.展开更多
Proton-conductive crystalline metal-organic framework nickel(Ⅱ) benzenetricar- boxylate Ni3(BTC)2A12H2O(MOF-Ni) was prepared by the reaction of nickel(Ⅱ) nitrate and 1,3,5- benzenetricarboxylic(BTC) acid i...Proton-conductive crystalline metal-organic framework nickel(Ⅱ) benzenetricar- boxylate Ni3(BTC)2A12H2O(MOF-Ni) was prepared by the reaction of nickel(Ⅱ) nitrate and 1,3,5- benzenetricarboxylic(BTC) acid in a mixed solvent of N,N-dimethylformamide(DMF)/C2H5OH/ H2O (1:1:1, ν/ν) at low temperature and short reaction time. It was characterized by thermo- gravimetric analyses (TG), FT-IR and N2 adsorption-desorption. Single-crystal X-ray diffraction analysis indicated that the complex belongs to monoclinic system, space group C2 with α = 17.407(6), b = 12.878(5), c = 6.542(2) A, β = 112.07°, V = 1359.0(8) A^3, Dc = 1.971 g/cm3, μ = 2.166 mm^-1 and Z = 2. Linear polarization resistance (LPR) analysis showed that the complex possesses semiconducting properties.展开更多
This study proposes a new electromagnetic rectangular mixer, and numerically examines the mixing characteristics of two different electrolyte solutions in the device under a uniform magnetic field. The mixer consists ...This study proposes a new electromagnetic rectangular mixer, and numerically examines the mixing characteristics of two different electrolyte solutions in the device under a uniform magnetic field. The mixer consists of a conduit with electrodes equipped on its top and bottom walls. The difference in the electric potentials applied to the sets of electrodes induces the current. The combination of the induced current and magnetic field yields Lorentz force, resulting in the fluid motion for pumping and mixing of the two different fluids. The numerical simulation is carried out with the use of commercial software CFX. The present numerical model is validated by an existing numerical work. The effect of different variables on mixing efficiency is investigated in many different cases with two different heights of the duct and various input voltages of the electrodes. The current simulation results indicate that the mixing performance can be enhanced by using multiple sets of electrodes and applying higher input voltages(absolute values) to the electrodes.展开更多
Determining osmotic suction from the electrical conductivity(EC)of soil pore water was widely reported in the literature.However,while dealing with unsaturated soils,they do not have enough soil pore water to be extra...Determining osmotic suction from the electrical conductivity(EC)of soil pore water was widely reported in the literature.However,while dealing with unsaturated soils,they do not have enough soil pore water to be extracted for a reliable measurement of EC.In this paper,the chilled-mirror dew-point hygrometer and contact filter paper method were used to determine the total and matric suctions for low-plasticity soils with different salinities(0.05‰,2.1‰,and 6.76‰).A new piecewise function was proposed to calculate the osmotic suction,with the piecewise point corresponding to the first occurrence of precipitated salt in mixed salt solutions(synthetic seawater).EC,ion and salt concentrations used for osmotic suction calculation were transformed from the established relationships of mixed salt solution instead of experimental measurement.The calculated osmotic suction by the proposed equation and the equations in the literature was compared with the indirectly measured one(the difference between the measured total and matric suctions).Results showed that the calculated osmotic suction,especially the one calculated using the proposed function,was in fair agreement with the indirectly measured data(especially for specimens with higher salinity of 6.76‰),suggesting that the transformation of EC and concentrations from the established relationship is a good alternative to direct measurement for lowplasticity soil.In particular,the proposed method could be applied to unsaturated low-plasticity soils which do not have enough soil pore water for a proper EC measurement.展开更多
In this paper,we propose a combined form of the bilinear Kadomtsev-Petviashvili equation and the bilinear extended(2+1)-dimensional shallow water wave equation,which is linked with a novel(2+1)-dimensional nonlinear m...In this paper,we propose a combined form of the bilinear Kadomtsev-Petviashvili equation and the bilinear extended(2+1)-dimensional shallow water wave equation,which is linked with a novel(2+1)-dimensional nonlinear model.This model might be applied to describe the evolution of nonlinear waves in the ocean.Under the effect of a novel combination of nonlinearity and dispersion terms,two cases of lump solutions to the(2+1)-dimensional nonlinear model are derived by searching for the quadratic function solutions to the bilinear form.Moreover,the one-lump-multi-stripe solutions are constructed by the test function combining quadratic functions and multiple exponential functions.The one-lump-multi-soliton solutions are derived by the test function combining quadratic functions and multiple hyperbolic cosine functions.Dynamic behaviors of the lump solutions and mixed solutions are analyzed via numerical simulation.The result is of importance to provide efficient expressions to model nonlinear waves and explain some interaction mechanism of nonlinear waves in physics.展开更多
In this paper,we analyze the extended Bogoyavlenskii-Kadomtsev-Petviashvili(eBKP)equation utilizing the condensed Hirota's approach.In accordance with a logarithmic derivative transform,we produce solutions for si...In this paper,we analyze the extended Bogoyavlenskii-Kadomtsev-Petviashvili(eBKP)equation utilizing the condensed Hirota's approach.In accordance with a logarithmic derivative transform,we produce solutions for single,double,and triple M-lump waves.Additionally,we investigate the interaction solutions of a single M-lump with a single soliton,a single M-lump with a double soliton,and a double M-lump with a single soliton.Furthermore,we create sophisticated single,double,and triple complex soliton wave solutions.The extended Bogoyavlenskii-Kadomtsev-Petviashvili equation describes nonlinear wave phenomena in fluid mechanics,plasma,and shallow water theory.By selecting appropriate values for the related free parameters we also create three-dimensional surfaces and associated counter plots to simulate the dynamical characteristics of the solutions offered.展开更多
The nonlocal nonlinear Gerdjikov-Ivanov(GI)equation is one of the most important integrable equations,which can be reduced from the third generic deformation of the derivative nonlinear Schr?dinger equation.The Darbou...The nonlocal nonlinear Gerdjikov-Ivanov(GI)equation is one of the most important integrable equations,which can be reduced from the third generic deformation of the derivative nonlinear Schr?dinger equation.The Darboux transformation is a successful method in solving many nonlocal equations with the help of symbolic computation.As applications,we obtain the bright-dark soliton,breather,rogue wave,kink,W-shaped soliton and periodic solutions of the nonlocal GI equation by constructing its 2 n-fold Darboux transformation.These solutions show rich wave structures for selections of different parameters.In all these instances we practically show that these solutions have different properties than the ones for local case.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51574118, 51571087, 51674292)the Natural Science Foundation of Hunan Province (No. 2015JJ4017)+1 种基金the Project of Innovation-driven Plan in Central South University (No. 2016CX007)the Hunan Provincial Science and Technology Plan Project, China (No. 2016TP1007)
文摘Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al com- posite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphol- ogies, chemical compositions, and microstructures of the graphene and the graphene/A1 composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed.
文摘Using results from various reactions that populate 10He, I conclude that the ground state has E2n = 1.07(7) MeV and the excited 0+ state is in the region of 2.1-3.1 MeV. The amount of the (sd)2 component in the ground state is less than about 0.075.
文摘The uncertainty of standard solution plays an important role in detection of pesticide residues. It may affect the accuracy of detection results. In this study, the 14 organophosphorus pesticides mixed standard solution was used as the material to analyze all the influencing factors for the preparation of mixed standard solution with uncertainty as the only judging index. The preparation uncertainty of mixed standard solution was calculated with the top-down calculation method. In the end, the expanded uncertainty was presented. The results showed that the preparation of mixed standard solution from stock solution with precise pipettes had a relatively low uncertainty.
文摘A novel utilization way of the sludge from wet calcium-based flue gas desulfurization (FGD) processes has been developed in this paper. This study focused on the conversion of the FGD gypsum into α-hemihydrate calcium sulfate by a hydrothermal salt solution method at atmospheric pressure. Experimental study has been carried out in a batch reactor. Qualitative and quantitative analyses were made by DSC/TG thermal analysis, SEM, XRD, metalloscope and chemical analysis. The experimental results showed that the modification of FGD gypsum was controlled by the dissolution and recrystallization mechanisms. With the introduction of FGD gypsum the salt solution was supersaturated, then crystal nucleus of α-hemihydrate calcium sulfate were produced in the solution. With the submicroscopic structure of FGD gypsum crystal changed, the crystal nucleus grew up into α-hemihydrate calcium sulfate crystals. Thus ,the modification of FGD gypsum was fulfilled.
基金the National Natural Science Foundation of China (No. 20276037, No. 20006010).
文摘The equation of Patwardhan and Kumar for water activities of mixed electrolyte solutions is extended to aqueous solutions containing non-electrolytes. This equation and the linear isopiestic relation are used to predict water activities of 56 ternary aqueous solutions in terms of the data of their binary subsystems. Both equation of Patwardhan and Kumar and the linear isopiestic relation can provide good predictions for water activities of the present 40 electrolyte solutions, and the linear isopiestic relation generally yields better predictions. The predictions of the extended equation of Patwardhan and Kumar and the linear isopiestic relation are in general quite reasonable for the present 8 ternary solutions of electrolytes and non-electrolytes, and the results of the linear isopiestic relation are usually better. The predictions of these two methods generally agree well with the experimental data for the 8 non-electrolyte mixtures being studied, and the linear isopiestic relation is better.
基金the National Natural Science Foundation of China(Grant No.12061054)Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region of China(Grant No.NJYT-20A06)。
文摘We gave the localized solutions,the interaction solutions and the mixed solutions to a reduced(3+1)-dimensional nonlinear evolution equation.These solutions were characterized by superposition formulas of positive quadratic functions,the exponential and hyperbolic functions.According to the known lump solution in the outset,we obtained the superposition formulas of positive quadratic functions by plausible reasoning.Next,we constructed the interaction solutions between the localized solutions and the exponential function solutions with the similar theory.These two kinds of solutions contained superposition formulas of positive quadratic functions,which were turned into general ternary quadratic functions,the coefficients of which were all rational operation of vector inner product.Then we obtained linear superposition formulas of exponential and hyperbolic function solutions.Finally,for aforementioned various solutions,their dynamic properties were showed by choosing specific values for parameters.From concrete plots,we observed wave characteristics of three kinds of solutions.Especially,we could observe distinct generation and separation situations when the localized wave and the stripe wave interacted at different time points.
文摘N-soliton solutions in the Wronskian form for the KdV equation with loss and nonuniformity terms were obtained. New rational-like solutions and mixed solutions were further derived. All these solutions were verified by direct substitutions into bilinear equation.
基金supported by the National Natural Science Foundation of China under Grant No.11601187 and Major SRT Project of Jiaxing University.
文摘The mixed solutions of the derivative nonlinear Schrödinger equation from the trivial seed (zero solution) are derived by using the determinant representation. By adjusting the interaction and degeneracy of mixed solutions, it is possible to obtain different types of solutions: phase solutions, breather solutions, phase-breather solutions and rogue waves.
基金Supported by the Global Change Research Program of China under Grant No 2015CB953904the National Natural Science Foundation of China under Grant Nos 11675054 and 11435005the Shanghai Collaborative Innovation Center of Trustworthy Software for Internet of Things under Grant No ZF1213
文摘The general bright-dark mixed N-soliton solution of the two-dimensional Maccari system is obtained with the KP hierarchy reduction method. The dynamics of single and two solitons are discussed in detail. Asymptotic analysis shows that two solitons undergo elastic collision accompanied by a position shift. Furthermore, our analysis on mixed soliton bound states shows that arbitrary higher-order soliton bound states can take place.
基金supported by the Natural Science Foundation of Hubei Province of China(No.2011CDA070)
文摘Proton-conductive crystalline metal-organic framework nickel(Ⅱ) benzenetricar- boxylate Ni3(BTC)2A12H2O(MOF-Ni) was prepared by the reaction of nickel(Ⅱ) nitrate and 1,3,5- benzenetricarboxylic(BTC) acid in a mixed solvent of N,N-dimethylformamide(DMF)/C2H5OH/ H2O (1:1:1, ν/ν) at low temperature and short reaction time. It was characterized by thermo- gravimetric analyses (TG), FT-IR and N2 adsorption-desorption. Single-crystal X-ray diffraction analysis indicated that the complex belongs to monoclinic system, space group C2 with α = 17.407(6), b = 12.878(5), c = 6.542(2) A, β = 112.07°, V = 1359.0(8) A^3, Dc = 1.971 g/cm3, μ = 2.166 mm^-1 and Z = 2. Linear polarization resistance (LPR) analysis showed that the complex possesses semiconducting properties.
基金supported by the National Research and Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology and Ministry of Knowledge Economy (Grant No. 2014045308)
文摘This study proposes a new electromagnetic rectangular mixer, and numerically examines the mixing characteristics of two different electrolyte solutions in the device under a uniform magnetic field. The mixer consists of a conduit with electrodes equipped on its top and bottom walls. The difference in the electric potentials applied to the sets of electrodes induces the current. The combination of the induced current and magnetic field yields Lorentz force, resulting in the fluid motion for pumping and mixing of the two different fluids. The numerical simulation is carried out with the use of commercial software CFX. The present numerical model is validated by an existing numerical work. The effect of different variables on mixing efficiency is investigated in many different cases with two different heights of the duct and various input voltages of the electrodes. The current simulation results indicate that the mixing performance can be enhanced by using multiple sets of electrodes and applying higher input voltages(absolute values) to the electrodes.
文摘Determining osmotic suction from the electrical conductivity(EC)of soil pore water was widely reported in the literature.However,while dealing with unsaturated soils,they do not have enough soil pore water to be extracted for a reliable measurement of EC.In this paper,the chilled-mirror dew-point hygrometer and contact filter paper method were used to determine the total and matric suctions for low-plasticity soils with different salinities(0.05‰,2.1‰,and 6.76‰).A new piecewise function was proposed to calculate the osmotic suction,with the piecewise point corresponding to the first occurrence of precipitated salt in mixed salt solutions(synthetic seawater).EC,ion and salt concentrations used for osmotic suction calculation were transformed from the established relationships of mixed salt solution instead of experimental measurement.The calculated osmotic suction by the proposed equation and the equations in the literature was compared with the indirectly measured one(the difference between the measured total and matric suctions).Results showed that the calculated osmotic suction,especially the one calculated using the proposed function,was in fair agreement with the indirectly measured data(especially for specimens with higher salinity of 6.76‰),suggesting that the transformation of EC and concentrations from the established relationship is a good alternative to direct measurement for lowplasticity soil.In particular,the proposed method could be applied to unsaturated low-plasticity soils which do not have enough soil pore water for a proper EC measurement.
基金supported by the Project of the Fundamental Research Funds for the Central Universities of China(2022JBMC034)the National Natural Science Foundation of China under Grant No.12275017Beijing Laboratory of National Economic Security Early-warning Engineering,Beijing Jiaotong University
文摘In this paper,we propose a combined form of the bilinear Kadomtsev-Petviashvili equation and the bilinear extended(2+1)-dimensional shallow water wave equation,which is linked with a novel(2+1)-dimensional nonlinear model.This model might be applied to describe the evolution of nonlinear waves in the ocean.Under the effect of a novel combination of nonlinearity and dispersion terms,two cases of lump solutions to the(2+1)-dimensional nonlinear model are derived by searching for the quadratic function solutions to the bilinear form.Moreover,the one-lump-multi-stripe solutions are constructed by the test function combining quadratic functions and multiple exponential functions.The one-lump-multi-soliton solutions are derived by the test function combining quadratic functions and multiple hyperbolic cosine functions.Dynamic behaviors of the lump solutions and mixed solutions are analyzed via numerical simulation.The result is of importance to provide efficient expressions to model nonlinear waves and explain some interaction mechanism of nonlinear waves in physics.
文摘In this paper,we analyze the extended Bogoyavlenskii-Kadomtsev-Petviashvili(eBKP)equation utilizing the condensed Hirota's approach.In accordance with a logarithmic derivative transform,we produce solutions for single,double,and triple M-lump waves.Additionally,we investigate the interaction solutions of a single M-lump with a single soliton,a single M-lump with a double soliton,and a double M-lump with a single soliton.Furthermore,we create sophisticated single,double,and triple complex soliton wave solutions.The extended Bogoyavlenskii-Kadomtsev-Petviashvili equation describes nonlinear wave phenomena in fluid mechanics,plasma,and shallow water theory.By selecting appropriate values for the related free parameters we also create three-dimensional surfaces and associated counter plots to simulate the dynamical characteristics of the solutions offered.
基金supported by the National Natural Science Foundation of China(Grant No.11371326 and Grant No.11975145)。
文摘The nonlocal nonlinear Gerdjikov-Ivanov(GI)equation is one of the most important integrable equations,which can be reduced from the third generic deformation of the derivative nonlinear Schr?dinger equation.The Darboux transformation is a successful method in solving many nonlocal equations with the help of symbolic computation.As applications,we obtain the bright-dark soliton,breather,rogue wave,kink,W-shaped soliton and periodic solutions of the nonlocal GI equation by constructing its 2 n-fold Darboux transformation.These solutions show rich wave structures for selections of different parameters.In all these instances we practically show that these solutions have different properties than the ones for local case.