We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations ...By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations with integral boundary conditions on infinite interval and establish the existence theorem of positive solutions and iterative sequence for approximating the positive solutions. The results in this paper improve some known results.展开更多
Some theorems are obtained for the existence of nontrivial solutions of Hamiltonian systems with Lagrangian boundary conditions by the minimax methods.
In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the cor...In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the corresponding well known Fredholm integral equation of second kind. The considered in this paper has been solved already numerically in [1].展开更多
The purpose of this paper is to investigate the stability and asymptotic behavior of the time-dependent solutions to a linear parabolic equation with nonlinear boundary condition in relation to their corresponding ste...The purpose of this paper is to investigate the stability and asymptotic behavior of the time-dependent solutions to a linear parabolic equation with nonlinear boundary condition in relation to their corresponding steady state solutions. Then, the above results are extended to a semilinear parabolic equation with nonlinear boundary condition by analyzing the corresponding eigenvalue problem and using the method of upper and lower solutions.展开更多
In this paper, using Local Linking Theorem, we obtain the existence of multiple solutions for a class of semilinear elliptic equations with nonlinear boundary conditions, in which the nonlinearites are compared with h...In this paper, using Local Linking Theorem, we obtain the existence of multiple solutions for a class of semilinear elliptic equations with nonlinear boundary conditions, in which the nonlinearites are compared with higher Neumann eigenvalue and the first Steklov eigenvalue.展开更多
In recent years, as the composite laminated plates are widely used in engineering practice such as aerospace, marine and building engineering, the vibration problem of the composite laminated plates is becoming more a...In recent years, as the composite laminated plates are widely used in engineering practice such as aerospace, marine and building engineering, the vibration problem of the composite laminated plates is becoming more and more important. Frequency, especially the fundamental frequency, has been considered as an important factor in vibration problem. In this paper, a calculation method of the fundamental frequency of arbitrary laminated plates under various boundary conditions is proposed. The vibration differential equation of the laminated plates is established at the beginning of this paper and the frequency formulae of specialty orthotropic laminated plates under various boundary conditions and antisymmetric angle-ply laminated plates with simply-supported edges are investigated. They are proved to be correct. Simple algorithm of the fundamental frequency for multilayer antisymmetric and arbitrary laminated plates under various boundary conditions is studied by a series of typical examples. From the perspective of coupling, when the number of laminated plates layers N〉8-10, some coupling influence on the fundamental frequency can be neglected. It is reasonable to use specialty orthotropic laminated plates with the same thickness but less layers to calculate the corresponding fundamental frequency of laminated plates. Several examples are conducted to prove correctness of this conclusion. At the end of this paper, the influence of the selected number of layers of specialty orthotropic laminates on the fundamental frequency is investigated. The accuracy and complexity are determined by the number of layers. It is necessary to use proper number of layers of special orthotropic laminates with the same thickness to simulate the fundamental frequency in different boundary conditions.展开更多
This paper investigates the stability and convergence of some knowndifference schemes for the numerical solution to heat conduction equation withderivative boundary conditions by the fictitious domain method.The discr...This paper investigates the stability and convergence of some knowndifference schemes for the numerical solution to heat conduction equation withderivative boundary conditions by the fictitious domain method.The discrete vari-ables at the false mesh points are firstly eliminated from the difference schemes andthe local truncation errors are then analyzed in detail.The stability and convergenceof the schemes are proved by energy method.An improvement is proposed to obtainbetter schemes over the original ones.Several numerical examples and comparisonswith other schemes are presented.展开更多
By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are o...By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are obtained for the existence of C2[0,1] positive solutions and C3[0,1] positive solutions.展开更多
This paper investigates some known difference schemes for the numerical solution to parabolic differential equation with derivative boundary conditions by the fictitious domain method.The stability and convergence in...This paper investigates some known difference schemes for the numerical solution to parabolic differential equation with derivative boundary conditions by the fictitious domain method.The stability and convergence in L ∞ are proven.展开更多
The paper is concerned with the multiplicity of solutions for some nonlinear elliptic equations involving critical Sobolev exponents and mixed boundary conditions.
In the present paper, we consider elliptic equations with nonlinear and nonlao mogeneous Robin boundary conditions of the type {-div(B(x,u)△u) = f in Ω,u=0 on Гo, B(x,u)Vu·n^-+γ(x)h(u) = 9 on Г1,w...In the present paper, we consider elliptic equations with nonlinear and nonlao mogeneous Robin boundary conditions of the type {-div(B(x,u)△u) = f in Ω,u=0 on Гo, B(x,u)Vu·n^-+γ(x)h(u) = 9 on Г1,where f and g are the element of L^1(Ω) and L^1(Г1), respectively. We define a notion of renormalized solution and we prove the existence of a solution. Under additionM assumptions on the matrix field B we show that the renormalized solution is unique.展开更多
In this paper, we study a class of singular fractional differential system with Riemann-Stieltjes integral boundary condition by constructing a new cone and using Leggett-Williams fixed point theorem. The existence of...In this paper, we study a class of singular fractional differential system with Riemann-Stieltjes integral boundary condition by constructing a new cone and using Leggett-Williams fixed point theorem. The existence of multiple positive solutions is obtained. An example is presented to illustrate our main results.展开更多
This paper is to investigate the positive solutions of the systems of second-order ordinary differential equations with nonhomogeneous multi-point boundary conditions. By the lower and upper solutions method, Schauder...This paper is to investigate the positive solutions of the systems of second-order ordinary differential equations with nonhomogeneous multi-point boundary conditions. By the lower and upper solutions method, Schauder fixed point theorem and fixed point index theory, under certain conditions, it is proved that there exist appropriate regions of parameters in which the problem has at least two, at least one or no positive solution.展开更多
The paper deals with the existence of three- solutions for the second- order differential equations with nonlinear boundary value conditions x″=f(t,x,x′) , t∈ [a,b], g1(x(a) ,x′(a) ) =0 , g2 (x(b) ,x′(...The paper deals with the existence of three- solutions for the second- order differential equations with nonlinear boundary value conditions x″=f(t,x,x′) , t∈ [a,b], g1(x(a) ,x′(a) ) =0 , g2 (x(b) ,x′(b) ) =0 , where f :[a,b]× R1× R1→ R1,gi:R1× R1→ R1(i=1 ,2 ) are continuous functions.The methods employed are the coincidence degree theory.As an application,the sufficient conditions under which there are arbitrary odd solutions for the BVP are obtained展开更多
This paper deals with the existence of positive solutions for the singular fourth order boundary value problem.A necessary and sufficient condition for the existence of C3 positive solution is given by means of the mo...This paper deals with the existence of positive solutions for the singular fourth order boundary value problem.A necessary and sufficient condition for the existence of C3 positive solution is given by means of the monotone iterative technique.Furthermore,the uniqueness of the C3 positive solution,and the iterative sequence of the C3 positive solution are also obtained.展开更多
Novel exact solutions of one-dimensional transient dynamic piezoelectric problems for thickness polarized layers and disks, or length polarized rods, are obtained. The solutions are derived using a time-domain Green’...Novel exact solutions of one-dimensional transient dynamic piezoelectric problems for thickness polarized layers and disks, or length polarized rods, are obtained. The solutions are derived using a time-domain Green’s function method that leads to an exact analytical recursive procedure which is applicable for a wide variety of boundary conditions including nonlinear cases. A nonlinear damper boundary condition is considered in more detail. The corresponding nonlinear relationship between stresses and velocities at a current time moment is used in the recursive procedure. In addition to the exact recursive procedure that is effective for calculations, some new practically important explicit exact solutions are presented. Several examples of the time behavior of the output electric potential difference are given to illustrate the effectiveness of the proposed exact approach.展开更多
A singularly perturbed second-order semilinear differential equation with integral boundary conditions is considered. By the method of boundary functions, the conditions under which there exists an internal transition...A singularly perturbed second-order semilinear differential equation with integral boundary conditions is considered. By the method of boundary functions, the conditions under which there exists an internal transition layer for the original problem are established. The existence of spike-type solution is obtained by smoothly connecting the solutions of left and right associated problems, and the asymptotic expansion of the spike-type solution is also presented.展开更多
This paper considers the problem of hydrodynamics and thermal boundary layers of Darcy flow over horizontal surface embedded in a porous medium. The solutions of such problems for the cases of uniform surface temperat...This paper considers the problem of hydrodynamics and thermal boundary layers of Darcy flow over horizontal surface embedded in a porous medium. The solutions of such problems for the cases of uniform surface temperature and variable surface temperature have been studied and analysed in many papers. This paper, however, attempts to find similarity solutions for the Darcy flow problem with a convective boundary condition at the plate surface. It is found that the solution is possible when the heat transfer coefficient is proportional to x<sup>–2/3</sup>. The numerical solutions thus obtained are analyzed for a range of values of the parameter characterizing the hot fluid convection process. Analytical expressions are provided for local surface heat flux and total surface heat transfer rate while the flow variables are discussed graphically.展开更多
This paper deals with the solution of a parametric equation with generalized boundary condiiton in transport theory. It gives the distribution of parameter (so called delta-eigenvalue [1]) with which the equation has ...This paper deals with the solution of a parametric equation with generalized boundary condiiton in transport theory. It gives the distribution of parameter (so called delta-eigenvalue [1]) with which the equation has non-zero solution. A necessary and sufficient condition for the existence of; he control critical eigenvalue delta0 is established.展开更多
文摘We consider a strongly non-linear degenerate parabolic-hyperbolic problem with p(x)-Laplacian diffusion flux function. We propose an entropy formulation and prove the existence of an entropy solution.
基金SuppoSed by the NSF of Anhui Provincial Education Depaxtment(KJ2012A265,KJ2012B187)
文摘By using cone theory and the MSnch fixed theorem combined with a monotone iterative technique, we investigate the existence of positive solutions for systems of second- order nonlinear singular differential equations with integral boundary conditions on infinite interval and establish the existence theorem of positive solutions and iterative sequence for approximating the positive solutions. The results in this paper improve some known results.
基金supported by the National Natural Science Foundation of China and 973 Program of STM.
文摘Some theorems are obtained for the existence of nontrivial solutions of Hamiltonian systems with Lagrangian boundary conditions by the minimax methods.
文摘In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the corresponding well known Fredholm integral equation of second kind. The considered in this paper has been solved already numerically in [1].
基金The project is supported by National Natural Science Foundation of China (10071026)
文摘The purpose of this paper is to investigate the stability and asymptotic behavior of the time-dependent solutions to a linear parabolic equation with nonlinear boundary condition in relation to their corresponding steady state solutions. Then, the above results are extended to a semilinear parabolic equation with nonlinear boundary condition by analyzing the corresponding eigenvalue problem and using the method of upper and lower solutions.
文摘In this paper, using Local Linking Theorem, we obtain the existence of multiple solutions for a class of semilinear elliptic equations with nonlinear boundary conditions, in which the nonlinearites are compared with higher Neumann eigenvalue and the first Steklov eigenvalue.
基金Foundation item: Supported by the National Natural Science Foundation of China (51109034).
文摘In recent years, as the composite laminated plates are widely used in engineering practice such as aerospace, marine and building engineering, the vibration problem of the composite laminated plates is becoming more and more important. Frequency, especially the fundamental frequency, has been considered as an important factor in vibration problem. In this paper, a calculation method of the fundamental frequency of arbitrary laminated plates under various boundary conditions is proposed. The vibration differential equation of the laminated plates is established at the beginning of this paper and the frequency formulae of specialty orthotropic laminated plates under various boundary conditions and antisymmetric angle-ply laminated plates with simply-supported edges are investigated. They are proved to be correct. Simple algorithm of the fundamental frequency for multilayer antisymmetric and arbitrary laminated plates under various boundary conditions is studied by a series of typical examples. From the perspective of coupling, when the number of laminated plates layers N〉8-10, some coupling influence on the fundamental frequency can be neglected. It is reasonable to use specialty orthotropic laminated plates with the same thickness but less layers to calculate the corresponding fundamental frequency of laminated plates. Several examples are conducted to prove correctness of this conclusion. At the end of this paper, the influence of the selected number of layers of specialty orthotropic laminates on the fundamental frequency is investigated. The accuracy and complexity are determined by the number of layers. It is necessary to use proper number of layers of special orthotropic laminates with the same thickness to simulate the fundamental frequency in different boundary conditions.
文摘This paper investigates the stability and convergence of some knowndifference schemes for the numerical solution to heat conduction equation withderivative boundary conditions by the fictitious domain method.The discrete vari-ables at the false mesh points are firstly eliminated from the difference schemes andthe local truncation errors are then analyzed in detail.The stability and convergenceof the schemes are proved by energy method.An improvement is proposed to obtainbetter schemes over the original ones.Several numerical examples and comparisonswith other schemes are presented.
基金Research supported by the National Natural Science Foundation of China(10471075)the Natural Science Foun-dation of Shandong Province of China(Y2006A04)
文摘By using the upper and lower solutions method and fixed point theory,we investigate a class of fourth-order singular differential equations with the Sturm-Liouville Boundary conditions.Some sufficient conditions are obtained for the existence of C2[0,1] positive solutions and C3[0,1] positive solutions.
文摘This paper investigates some known difference schemes for the numerical solution to parabolic differential equation with derivative boundary conditions by the fictitious domain method.The stability and convergence in L ∞ are proven.
文摘The paper is concerned with the multiplicity of solutions for some nonlinear elliptic equations involving critical Sobolev exponents and mixed boundary conditions.
基金University of the Philippines Diliman for their support
文摘In the present paper, we consider elliptic equations with nonlinear and nonlao mogeneous Robin boundary conditions of the type {-div(B(x,u)△u) = f in Ω,u=0 on Гo, B(x,u)Vu·n^-+γ(x)h(u) = 9 on Г1,where f and g are the element of L^1(Ω) and L^1(Г1), respectively. We define a notion of renormalized solution and we prove the existence of a solution. Under additionM assumptions on the matrix field B we show that the renormalized solution is unique.
基金The University NSF (KJ2017A442,KJ2018A0452) of Anhui Provincial Education Departmentthe Foundation (2016XJGG13,2019XJZY02,2019XJSN03) of Suzhou University
文摘In this paper, we study a class of singular fractional differential system with Riemann-Stieltjes integral boundary condition by constructing a new cone and using Leggett-Williams fixed point theorem. The existence of multiple positive solutions is obtained. An example is presented to illustrate our main results.
文摘This paper is to investigate the positive solutions of the systems of second-order ordinary differential equations with nonhomogeneous multi-point boundary conditions. By the lower and upper solutions method, Schauder fixed point theorem and fixed point index theory, under certain conditions, it is proved that there exist appropriate regions of parameters in which the problem has at least two, at least one or no positive solution.
文摘The paper deals with the existence of three- solutions for the second- order differential equations with nonlinear boundary value conditions x″=f(t,x,x′) , t∈ [a,b], g1(x(a) ,x′(a) ) =0 , g2 (x(b) ,x′(b) ) =0 , where f :[a,b]× R1× R1→ R1,gi:R1× R1→ R1(i=1 ,2 ) are continuous functions.The methods employed are the coincidence degree theory.As an application,the sufficient conditions under which there are arbitrary odd solutions for the BVP are obtained
文摘This paper deals with the existence of positive solutions for the singular fourth order boundary value problem.A necessary and sufficient condition for the existence of C3 positive solution is given by means of the monotone iterative technique.Furthermore,the uniqueness of the C3 positive solution,and the iterative sequence of the C3 positive solution are also obtained.
文摘Novel exact solutions of one-dimensional transient dynamic piezoelectric problems for thickness polarized layers and disks, or length polarized rods, are obtained. The solutions are derived using a time-domain Green’s function method that leads to an exact analytical recursive procedure which is applicable for a wide variety of boundary conditions including nonlinear cases. A nonlinear damper boundary condition is considered in more detail. The corresponding nonlinear relationship between stresses and velocities at a current time moment is used in the recursive procedure. In addition to the exact recursive procedure that is effective for calculations, some new practically important explicit exact solutions are presented. Several examples of the time behavior of the output electric potential difference are given to illustrate the effectiveness of the proposed exact approach.
基金National Natural Science Foundation of China(No.10701023)the Fundamental Research Funds for the Central Universities,China+1 种基金E-Institutes of Shanghai Municipal Education Commission,China(No.E03004)Natural Science Foundation of Shanghai,China(No.10ZR1400100)
文摘A singularly perturbed second-order semilinear differential equation with integral boundary conditions is considered. By the method of boundary functions, the conditions under which there exists an internal transition layer for the original problem are established. The existence of spike-type solution is obtained by smoothly connecting the solutions of left and right associated problems, and the asymptotic expansion of the spike-type solution is also presented.
文摘This paper considers the problem of hydrodynamics and thermal boundary layers of Darcy flow over horizontal surface embedded in a porous medium. The solutions of such problems for the cases of uniform surface temperature and variable surface temperature have been studied and analysed in many papers. This paper, however, attempts to find similarity solutions for the Darcy flow problem with a convective boundary condition at the plate surface. It is found that the solution is possible when the heat transfer coefficient is proportional to x<sup>–2/3</sup>. The numerical solutions thus obtained are analyzed for a range of values of the parameter characterizing the hot fluid convection process. Analytical expressions are provided for local surface heat flux and total surface heat transfer rate while the flow variables are discussed graphically.
基金Project supported by the National Natural Science Foundation of China.
文摘This paper deals with the solution of a parametric equation with generalized boundary condiiton in transport theory. It gives the distribution of parameter (so called delta-eigenvalue [1]) with which the equation has non-zero solution. A necessary and sufficient condition for the existence of; he control critical eigenvalue delta0 is established.