Throughout the supply chain,there is interest in conserving resources and reducing the textile industry's environmental footprint.Every stage of a textile product's life cycle has environmental impacts-from fi...Throughout the supply chain,there is interest in conserving resources and reducing the textile industry's environmental footprint.Every stage of a textile product's life cycle has environmental impacts-from fiber production through manufacturing and retailing to laundering and disposal by consumers.Of particular concern is the use of water,energy,and chemicals(WEC) in textile processing-an area where technological advances offer significant savings in resources and environmental benefits.In cotton textile processing, dyeing and finishing have the largest WEC requirements and therefore offer the greatest scope for reductions.展开更多
The effects of different solution methods on microstructure, mechanical properties and precipitation behavior of Al-Mg-Si alloy were investigated by scanning electron microscope, transmission electron microscope, tens...The effects of different solution methods on microstructure, mechanical properties and precipitation behavior of Al-Mg-Si alloy were investigated by scanning electron microscope, transmission electron microscope, tensile test, and differential scanning calorimetry. The results revealed that the recrystallized grains of the alloy after the solution treatment with hot air became smaller and more uniform, compared with solution treatment with electrical resistance. The texture of the alloy after two solution treatment methods was different. More rotated cube components were formed through solution treatment with electrical resistance, which was better for improving the drawability of the alloy. The strength of the alloy under the solution treatment with hot air was higher before stamping, because of the small uniform grains and many clusters in the matrix. The alloy solution treated with hot air also possessed good bake hardenability, because the transformation occurred on more clusters in the matrix.展开更多
The advancement of renewable energy(RE)represents a pivotal strategy in mitigating climate change and advancing energy transition efforts.A current of research pertains to strategies for fostering RE growth.Among the ...The advancement of renewable energy(RE)represents a pivotal strategy in mitigating climate change and advancing energy transition efforts.A current of research pertains to strategies for fostering RE growth.Among the frequently proposed approaches,employing optimization models to facilitate decision-making stands out prominently.Drawing from an extensive dataset comprising 32806 literature entries encompassing the optimization of renewable energy systems(RES)from 1990 to 2023 within the Web of Science database,this study reviews the decision-making optimization problems,models,and solution methods thereof throughout the renewable energy development and utilization chain(REDUC)process.This review also endeavors to structure and assess the contextual landscape of RES optimization modeling research.As evidenced by the literature review,optimization modeling effectively resolves decisionmaking predicaments spanning RE investment,construction,operation and maintenance,and scheduling.Predominantly,a hybrid model that combines prediction,optimization,simulation,and assessment methodologies emerges as the favored approach for optimizing RES-related decisions.The primary framework prevalent in extant research solutions entails the dissection and linearization of established models,in combination with hybrid analytical strategies and artificial intelligence algorithms.Noteworthy advancements within modeling encompass domains such as uncertainty,multienergy carrier considerations,and the refinement of spatiotemporal resolution.In the realm of algorithmic solutions for RES optimization models,a pronounced focus is anticipated on the convergence of analytical techniques with artificial intelligence-driven optimization.Furthermore,this study serves to facilitate a comprehensive understanding of research trajectories and existing gaps,expediting the identification of pertinent optimization models conducive to enhancing the efficiency of REDUC development endeavors.展开更多
On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an exampl...On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an example for the solution of the analytical expressions of the explicit displacements which are proved mathematically; then some conclusions are reached that are useful to structural sensitivity analysis and optimization. In the third part of the paper, a generalized geometric programming method is sugguested for the optimal model with the explicit displacement. Finally, the analytical solutions of the displacements of three trusses are given as examples.展开更多
The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition a...The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition at the corner point. The former can be solved directly by the equilibrium differential equation and the boundary conditions of four edges of the plate. The latter can be solved by using the superposition principle. Making use of the recommended method, the bending of the plate with all kinds of...展开更多
Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization...Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.展开更多
Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles ...Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles were investigated. Cu particles were prepared at pH 3, 5 or 7, with the smallest Cu particles obtained at pH 7. However, Cu particles could not be prepared at pH 9 or 11. The average size of Cu2O particles can affect that of Cu particles. Larger Cu2O particles result in larger Cu particles. In addition, experiments were conducted to explore the reaction process by measuring the X-ray diffraction (XRD) patterns of specimens collected at different time points during the reaction. It was found that Cu(OH)2 was initially formed as a precursor, followed by the formation of Cu2O, which was finally reduced to Cu particles.展开更多
The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions f...The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.展开更多
The computational efficiency of numerical solution of linearalgebraic equations in finite elements can be improved in two ways.One is to decrease the fill-in numbers, which are new non-ze- ronumbers in the matrix of g...The computational efficiency of numerical solution of linearalgebraic equations in finite elements can be improved in two ways.One is to decrease the fill-in numbers, which are new non-ze- ronumbers in the matrix of global stiffness generated during theprocess of elimination. The other is to reduce the computationaloperation of multiplying a real number by zero. Based on the factthat the order of elimination can determine how many fill-in numbersshould be generated, we present a new method for optimization ofnumbering nodes. This method is quite different from bandwidthoptimiza- tion. Fill-in numbers can be decreased in a large scale bythe use of this method. The bi-factorization method is adopted toavoid multiplying real numbers by zero. For large scale finiteelement analysis, the method presented in this paper is moreefficient than the traditional LDLT method.展开更多
With the rapid development of the internet of things(IoT)and wearable electronics,the role of flexible sensors is becoming increasingly irreplaceable,due to their ability to process and convert information acquisition...With the rapid development of the internet of things(IoT)and wearable electronics,the role of flexible sensors is becoming increasingly irreplaceable,due to their ability to process and convert information acquisition.Two-dimensional(2D)materials have been widely welcomed by researchers as sensitive layers,which broadens the range and application of flexible sensors due to the advantages of their large specific surface area,tunable energy bands,controllable thickness at the atomic level,stable mechanical properties,and excellent optoelectronic properties.This review focuses on five different types of 2D materials for monitoring pressure,humidity,sound,gas,and so on,to realize the recognition and conversion of human body and environmental signals.Meanwhile,the main problems and possible solutions of flexible sensors based on 2D materials as sensitive layers are summarized.展开更多
In this article the travelling wave solution for a class of nonlinear reaction diffusion problems are considered. Using the homotopic method and the theory of travelling wave transform, the approximate solution for th...In this article the travelling wave solution for a class of nonlinear reaction diffusion problems are considered. Using the homotopic method and the theory of travelling wave transform, the approximate solution for the corresponding problem is obtained.展开更多
Titania catalysts were synthesized by a solution combustion method (SCM). Photodegradation of 4-chlorophenol (4-CP) using the synthesized catalysts was studied under both visible light (λ≥420nm) and sunlight i...Titania catalysts were synthesized by a solution combustion method (SCM). Photodegradation of 4-chlorophenol (4-CP) using the synthesized catalysts was studied under both visible light (λ≥420nm) and sunlight irradiation. The effect of preparation conditions on photocatalytic activities of the synthesized catalysts was investigated. The optimal photocatalytic activity of the catalyst (denoted as A1 ) was obtained under the following synthesis conditions: ignition temperature of 350~C, fuel ratio ( φ) of 1 and calcination time of lh. The degradation and mineralization ratio of 4-CP were 78.2% and 53.7% respectively under visible light irradiation for 3h using catalyst A1. And the catalyst A1 also showed high photocatalytic activity under sunlight irradiation.展开更多
The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and ...The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and anisotropic Helmholtz problems with different wave numbers. The AEM is used to convert the original governing equation into the classical Poisson's equation, and the MFS and RBF approximations are used to derive the homogeneous and particular solutions, respectively. Finally, the satisfaction of the solution consisting of the homogeneous and particular parts to the related governing equation and boundary conditions can produce a system of linear equations, which can be solved with the singular value decomposition (SVD) technique. In the computation, such crucial factors related to the MFS-RBF as the location of the virtual boundary, the differential and integrating strategies, and the variation of shape parameters in multi-quadric (MQ) are fully analyzed to provide useful reference.展开更多
The paper deals with a development of the discrete-analytical method for the solution of the dynamical problems of a hollow sphere with inhomogeneous initial stresses.The examinations are made with respect to the prob...The paper deals with a development of the discrete-analytical method for the solution of the dynamical problems of a hollow sphere with inhomogeneous initial stresses.The examinations are made with respect to the problem on the natural vibration of the hollow sphere the initial stresses in which is caused by internal and external uniformly distributed pressure.The initial stresses in the sphere are determined within the scope of the exact equations of elastostatics.It is assumed that after appearing this static initial stresses the sphere gets a dynamical excitation and mechanical behavior of the sphere caused by this excitation is described with the so-called three-dimensional linearized equations of elastic wave propagation in initially stressed bodies.For the solution of these equations,which have variable coefficients,the discrete analytical solution method is developed and applied.In particular,it is established that the convergence of the numerical results with respect to the number of discretization is very acceptable and applicable for the considered type dynamical problems.Numerical results on the influence of the initial stresses on the values of the natural frequencies of the hollow sphere are also presented and these results are discussed.展开更多
Ordered zinc oxide (ZnO) rod arrays with very high orientation were fabricated on Si substrates by using a solution method. The substrate surfaces were functionalized by Self-Assembly Monolayers (SAMs). In the ver...Ordered zinc oxide (ZnO) rod arrays with very high orientation were fabricated on Si substrates by using a solution method. The substrate surfaces were functionalized by Self-Assembly Monolayers (SAMs). In the very early growth stage, the oriented ZnO crystals had already grown, which appeared to be the main reason why ZnO nanorods showed very high orientation. The un-dense and un-uniform SAMs provided a surface that was heterogeneous to ZnO nucleation. Consequently, highly oriented ZnO rods were selectively grown on the "coin-like" SAM-uncovered regions. The route developed here can provide some helpful information to control the nucleation and orientation of ZnO in aqueous solution. Also, the site-selective growth mechanisms can indicate a clue to grow patterned highly oriented ZnO nanorod arrays by the organic template.展开更多
Nanoparticles of potassium ferrite(KFeO_(2))in this work were synthesized by a simple egg white solution method upon calcination in air at 773,873,and 973 K for 2 h.The effects of calcination temperature on the struct...Nanoparticles of potassium ferrite(KFeO_(2))in this work were synthesized by a simple egg white solution method upon calcination in air at 773,873,and 973 K for 2 h.The effects of calcination temperature on the structural and magnetic properties of the synthesized KFeO_(2) nanoparticles were investigated.By varying the calcination temperature,X-ray diffraction and transmission electron microscopy results indicated the changes in crystallinity and morphology including particle size,respectively.Notably,the reduction in particle size of the synthesized KFeO_(2) was found to have a remarkable influence on the magnetic properties.At room temperature,the synthesized KFeO_(2) nanoparticles prepared at 873 K exhibited the highest saturation magnetization(M_(S))of 2.07×10^(4) A·m^(−1).In addition,the coercivity(H_(C))increased from 3.51 to 16.89 kA·m^(−1) as the calcination temperature increased to 973 K.The zero-field cooled(ZFC)results showed that the blocking temperatures(T_(B))of about 125 and 85 K were observed in the samples calcined at 773 and 873 K,respectively.Therefore,this work showed that the egg white solution method is simple,cost effective,and environmentally friendly for the preparation of KFeO_(2) nanoparticles.展开更多
New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's pa...New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's parameters and travelling wave transformation parameters. Some figures for a specific kind of solution are also presented.展开更多
For Time Difference Of Arrival(TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the...For Time Difference Of Arrival(TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the rectangular and polar coordinates.On the condition of rectangular coordinates,first of all,it solves the radial range between the target and reference station,then cal-culates the location of the target.In the case of polar coordinates,the azimuth between the target and reference station is solved first,then the radial range between the target and reference station is figured out,finally the location of the target is obtained.Simultaneously,the simulation and comparison analysis are given in detail,and show that the polar solving method has the better fuzzy performance than that of rectangular coordinate.展开更多
The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firs...The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.展开更多
文摘Throughout the supply chain,there is interest in conserving resources and reducing the textile industry's environmental footprint.Every stage of a textile product's life cycle has environmental impacts-from fiber production through manufacturing and retailing to laundering and disposal by consumers.Of particular concern is the use of water,energy,and chemicals(WEC) in textile processing-an area where technological advances offer significant savings in resources and environmental benefits.In cotton textile processing, dyeing and finishing have the largest WEC requirements and therefore offer the greatest scope for reductions.
基金Project(2016YFB0300605)supported by the National Key Research and Development Program of ChinaProject(51234002)supported by the National Natural Science Foundation of China+1 种基金Project(L2013113)supported by the Liaoning Province Science and Technology,ChinaProject(N140703002)supported by the Fundamental Research Funds for the Central Universities,China
文摘The effects of different solution methods on microstructure, mechanical properties and precipitation behavior of Al-Mg-Si alloy were investigated by scanning electron microscope, transmission electron microscope, tensile test, and differential scanning calorimetry. The results revealed that the recrystallized grains of the alloy after the solution treatment with hot air became smaller and more uniform, compared with solution treatment with electrical resistance. The texture of the alloy after two solution treatment methods was different. More rotated cube components were formed through solution treatment with electrical resistance, which was better for improving the drawability of the alloy. The strength of the alloy under the solution treatment with hot air was higher before stamping, because of the small uniform grains and many clusters in the matrix. The alloy solution treated with hot air also possessed good bake hardenability, because the transformation occurred on more clusters in the matrix.
文摘The advancement of renewable energy(RE)represents a pivotal strategy in mitigating climate change and advancing energy transition efforts.A current of research pertains to strategies for fostering RE growth.Among the frequently proposed approaches,employing optimization models to facilitate decision-making stands out prominently.Drawing from an extensive dataset comprising 32806 literature entries encompassing the optimization of renewable energy systems(RES)from 1990 to 2023 within the Web of Science database,this study reviews the decision-making optimization problems,models,and solution methods thereof throughout the renewable energy development and utilization chain(REDUC)process.This review also endeavors to structure and assess the contextual landscape of RES optimization modeling research.As evidenced by the literature review,optimization modeling effectively resolves decisionmaking predicaments spanning RE investment,construction,operation and maintenance,and scheduling.Predominantly,a hybrid model that combines prediction,optimization,simulation,and assessment methodologies emerges as the favored approach for optimizing RES-related decisions.The primary framework prevalent in extant research solutions entails the dissection and linearization of established models,in combination with hybrid analytical strategies and artificial intelligence algorithms.Noteworthy advancements within modeling encompass domains such as uncertainty,multienergy carrier considerations,and the refinement of spatiotemporal resolution.In the realm of algorithmic solutions for RES optimization models,a pronounced focus is anticipated on the convergence of analytical techniques with artificial intelligence-driven optimization.Furthermore,this study serves to facilitate a comprehensive understanding of research trajectories and existing gaps,expediting the identification of pertinent optimization models conducive to enhancing the efficiency of REDUC development endeavors.
文摘On the basis of the concept of finite element methods, the rigorous analytical solutions of structural response in terms of the design variables are researched in this paper. The spatial trusses are taken as an example for the solution of the analytical expressions of the explicit displacements which are proved mathematically; then some conclusions are reached that are useful to structural sensitivity analysis and optimization. In the third part of the paper, a generalized geometric programming method is sugguested for the optimal model with the explicit displacement. Finally, the analytical solutions of the displacements of three trusses are given as examples.
文摘The bending of rectangular plate is divided into the generalized statically determinate bending and the generalized statically indeterminate bending based on the analysis of the completeness of calculating condition at the corner point. The former can be solved directly by the equilibrium differential equation and the boundary conditions of four edges of the plate. The latter can be solved by using the superposition principle. Making use of the recommended method, the bending of the plate with all kinds of...
基金Project supported by Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, China Project (2010JK765) supported by the Education Department of Shaanxi Province, China
文摘Nanosphere-like Li2FeSiO4/C was synthesized via a solution method using sucrose as carbon sources under a mild condition of time-saving and energy-saving, followed by sintering at high temperatures for crystallization. The amount of carbon in the composite is less than 10% (mass fraction), and the X-ray diffraction result confirms that the sample is of pure single phase indexed with the orthorhombic Pmn21 space group. The particle size of the Li2FeSiO4/C synthesized at 700 °C for 9 h is very fine and spherical-like with a size of 200 nm. The electrochemical performance of this material, including reversible capacity, cycle number, and charge-discharge characteristics, were tested. The cell of this sample can deliver a discharge capacity of 166 mA-h/g at C/20 rate in the first three cycles. After 30 cycles, the capacity decreases to 158 mA-h/g, and the capacity retention is up to 95%. The results show that this method can prepare nanosphere-like Li2FeSiO4/C composite with good electrochemical performance.
文摘Cu nanoparticles were prepared by reducing Cu2+ ions with ascorbic acid through aqueous solution reduction method. The effects of solution pH and average size of Cu2O particles on the preparation of Cu nanoparticles were investigated. Cu particles were prepared at pH 3, 5 or 7, with the smallest Cu particles obtained at pH 7. However, Cu particles could not be prepared at pH 9 or 11. The average size of Cu2O particles can affect that of Cu particles. Larger Cu2O particles result in larger Cu particles. In addition, experiments were conducted to explore the reaction process by measuring the X-ray diffraction (XRD) patterns of specimens collected at different time points during the reaction. It was found that Cu(OH)2 was initially formed as a precursor, followed by the formation of Cu2O, which was finally reduced to Cu particles.
文摘The preparation of Cu nanoparticles by the aqueous solution reduction method was investigated. The effects of different reaction parameters on the preparation of Cu nanoparticles were studied. The optimum conditions for preparing well-dispersed nanoparticles were found as follows: 0.4 mol/L NaBH4 was added into solution containing 0.2 mol/L Cu2+, 1.0% gelatin dispersant in mass fraction, and 1.2 mol/L NH3?H2O at pH 12 and 313 K. In addition, a series of experiments were performed to discover the reaction process. NH3?H2O was found to be able to modulate the reaction process. At pH=10, Cu2+ was transformed to Cu(NH3)42+ as precursor after the addition of NH3?H2O, and then Cu(NH3)42+ was reduced by NaBH4 solution. At pH=12, Cu2+ was transformed to Cu(OH)2 as precursor after the addition of NH3?H2O, and Cu(OH)2 was then reduced by NaBH4 solution.
文摘The computational efficiency of numerical solution of linearalgebraic equations in finite elements can be improved in two ways.One is to decrease the fill-in numbers, which are new non-ze- ronumbers in the matrix of global stiffness generated during theprocess of elimination. The other is to reduce the computationaloperation of multiplying a real number by zero. Based on the factthat the order of elimination can determine how many fill-in numbersshould be generated, we present a new method for optimization ofnumbering nodes. This method is quite different from bandwidthoptimiza- tion. Fill-in numbers can be decreased in a large scale bythe use of this method. The bi-factorization method is adopted toavoid multiplying real numbers by zero. For large scale finiteelement analysis, the method presented in this paper is moreefficient than the traditional LDLT method.
基金support of National Natural Science Foundation of China(Nos.52192610,62422120,52371202,52203307,52125205,52202181,and 52102184)Natural Science Foundation of Beijing(Nos.L223006 and 2222088).
文摘With the rapid development of the internet of things(IoT)and wearable electronics,the role of flexible sensors is becoming increasingly irreplaceable,due to their ability to process and convert information acquisition.Two-dimensional(2D)materials have been widely welcomed by researchers as sensitive layers,which broadens the range and application of flexible sensors due to the advantages of their large specific surface area,tunable energy bands,controllable thickness at the atomic level,stable mechanical properties,and excellent optoelectronic properties.This review focuses on five different types of 2D materials for monitoring pressure,humidity,sound,gas,and so on,to realize the recognition and conversion of human body and environmental signals.Meanwhile,the main problems and possible solutions of flexible sensors based on 2D materials as sensitive layers are summarized.
基金Supported by the National Natural Sciences Foundation of China(40676016 and 10471039)the National Key Project for Basic Research(2003CB415101-03 and 2004CB418304)+2 种基金the Key Project of the Chinese Academy of Sciences(KZCX3-SW-221)in part by E-Institutes of Shanghai Municipal Education Commission(N.E03004)the Natural Science Foundation of Zeijiang,China(Y606268).
文摘In this article the travelling wave solution for a class of nonlinear reaction diffusion problems are considered. Using the homotopic method and the theory of travelling wave transform, the approximate solution for the corresponding problem is obtained.
基金Supported by the Key Laboratory of Material-Oriented Chemical Engineering of Jiangsu Province and Ministry of Education.
文摘Titania catalysts were synthesized by a solution combustion method (SCM). Photodegradation of 4-chlorophenol (4-CP) using the synthesized catalysts was studied under both visible light (λ≥420nm) and sunlight irradiation. The effect of preparation conditions on photocatalytic activities of the synthesized catalysts was investigated. The optimal photocatalytic activity of the catalyst (denoted as A1 ) was obtained under the following synthesis conditions: ignition temperature of 350~C, fuel ratio ( φ) of 1 and calcination time of lh. The degradation and mineralization ratio of 4-CP were 78.2% and 53.7% respectively under visible light irradiation for 3h using catalyst A1. And the catalyst A1 also showed high photocatalytic activity under sunlight irradiation.
文摘The present work describes the application of the method of fundamental solutions (MFS) along with the analog equation method (AEM) and radial basis function (RBF) approximation for solving the 2D isotropic and anisotropic Helmholtz problems with different wave numbers. The AEM is used to convert the original governing equation into the classical Poisson's equation, and the MFS and RBF approximations are used to derive the homogeneous and particular solutions, respectively. Finally, the satisfaction of the solution consisting of the homogeneous and particular parts to the related governing equation and boundary conditions can produce a system of linear equations, which can be solved with the singular value decomposition (SVD) technique. In the computation, such crucial factors related to the MFS-RBF as the location of the virtual boundary, the differential and integrating strategies, and the variation of shape parameters in multi-quadric (MQ) are fully analyzed to provide useful reference.
文摘The paper deals with a development of the discrete-analytical method for the solution of the dynamical problems of a hollow sphere with inhomogeneous initial stresses.The examinations are made with respect to the problem on the natural vibration of the hollow sphere the initial stresses in which is caused by internal and external uniformly distributed pressure.The initial stresses in the sphere are determined within the scope of the exact equations of elastostatics.It is assumed that after appearing this static initial stresses the sphere gets a dynamical excitation and mechanical behavior of the sphere caused by this excitation is described with the so-called three-dimensional linearized equations of elastic wave propagation in initially stressed bodies.For the solution of these equations,which have variable coefficients,the discrete analytical solution method is developed and applied.In particular,it is established that the convergence of the numerical results with respect to the number of discretization is very acceptable and applicable for the considered type dynamical problems.Numerical results on the influence of the initial stresses on the values of the natural frequencies of the hollow sphere are also presented and these results are discussed.
基金the National Natural Science Foundation of China(No.50702029)Shandong Provincial Education Department(No.J05D08)Natural Science Foundation of Qingdao(No.05-1-JC-89)
文摘Ordered zinc oxide (ZnO) rod arrays with very high orientation were fabricated on Si substrates by using a solution method. The substrate surfaces were functionalized by Self-Assembly Monolayers (SAMs). In the very early growth stage, the oriented ZnO crystals had already grown, which appeared to be the main reason why ZnO nanorods showed very high orientation. The un-dense and un-uniform SAMs provided a surface that was heterogeneous to ZnO nucleation. Consequently, highly oriented ZnO rods were selectively grown on the "coin-like" SAM-uncovered regions. The route developed here can provide some helpful information to control the nucleation and orientation of ZnO in aqueous solution. Also, the site-selective growth mechanisms can indicate a clue to grow patterned highly oriented ZnO nanorod arrays by the organic template.
基金This work was supported by Suranaree University of Tech-nology(SUT)was financially supported by the Office of the Higher Education Commission under NRU Project of Thailand and the Research Network NANOTEC(RNN)pro-gram of the National Nanotechnology Center(NANOTEC),NSTDA,Ministry of Higher Education,Science,Research and Innovation(MHESI),Thailand.
文摘Nanoparticles of potassium ferrite(KFeO_(2))in this work were synthesized by a simple egg white solution method upon calcination in air at 773,873,and 973 K for 2 h.The effects of calcination temperature on the structural and magnetic properties of the synthesized KFeO_(2) nanoparticles were investigated.By varying the calcination temperature,X-ray diffraction and transmission electron microscopy results indicated the changes in crystallinity and morphology including particle size,respectively.Notably,the reduction in particle size of the synthesized KFeO_(2) was found to have a remarkable influence on the magnetic properties.At room temperature,the synthesized KFeO_(2) nanoparticles prepared at 873 K exhibited the highest saturation magnetization(M_(S))of 2.07×10^(4) A·m^(−1).In addition,the coercivity(H_(C))increased from 3.51 to 16.89 kA·m^(−1) as the calcination temperature increased to 973 K.The zero-field cooled(ZFC)results showed that the blocking temperatures(T_(B))of about 125 and 85 K were observed in the samples calcined at 773 and 873 K,respectively.Therefore,this work showed that the egg white solution method is simple,cost effective,and environmentally friendly for the preparation of KFeO_(2) nanoparticles.
文摘New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's parameters and travelling wave transformation parameters. Some figures for a specific kind of solution are also presented.
基金Supported by the National Natural Science Foundation of China (No. 60825104,61072107)the National Postdoctor Fundation (No. 20090451251)+1 种基金the Shaanxi Industry Surmount Foundation (2009K08-31)the Fundamental Research Funds for the Central Universities(JY10000-902025) of China
文摘For Time Difference Of Arrival(TDOA) location based on multi-ground stations scene,two direct solution methods are proposed to solve the target position in TDOA location.Therein,the solving methods are realized in the rectangular and polar coordinates.On the condition of rectangular coordinates,first of all,it solves the radial range between the target and reference station,then cal-culates the location of the target.In the case of polar coordinates,the azimuth between the target and reference station is solved first,then the radial range between the target and reference station is figured out,finally the location of the target is obtained.Simultaneously,the simulation and comparison analysis are given in detail,and show that the polar solving method has the better fuzzy performance than that of rectangular coordinate.
文摘The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.