It is confirmed that phase homogenization is very important for improving the magnetic properties of 2:17-type Sm-Co sintered magnets,In this work,the influence of solid solution process on microstructure and magnetic...It is confirmed that phase homogenization is very important for improving the magnetic properties of 2:17-type Sm-Co sintered magnets,In this work,the influence of solid solution process on microstructure and magnetic properties of the Sm(CobalFe0.233Cu0.073Zr0.024)7.6 sintered magnets was systematically studied.With the solid-solution treating duration(tS)increasing from 0 to 4 h,intrinsic coercivity(Hcj)increases from 12.83 to 36.54 kOe,magnetic field at knee-point(Hknee)increases from2.76 to 19.14 kOe,and the maximum energy product increases from 19.79 to 29.48 MGOe.The electron probe microanalyzer results reveal that there mainly exist gray and dark regions besides"white"rare earth-rich phase,and the conte nt of Sm,Fe and Cu elements for the two kinds of regions changes a lot for the specimens,Furthermore,with tS increasing up to 4 h,the elements content deviation between the gray and dark regions becomes small gradually from 3.94 at%to 0.27 at%,7.66 at%to 0.21 at%and 7.27 at%to 0.16 at%for Sm,Fe and Cu elements,respectively.Moreover,transmission electron microscopy results show that the distribution of cell size is much more concentrated for aged specimens when tS is 4 h.It is also found that the Cu concentration at cell boundaries for the 4 h solid-solution treatment case shows relatively higher values and greater concentration gradient(1.94 at%/nm).It is verified that sufficient solution treatment duration is prerequisite to form these homogeneous microstructural features,which are the key points for obtaining both high Hcj and Hknee.展开更多
Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through soluti...Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability.展开更多
Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promis...Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promising for the greatly potential commercialization due to the scalability and compatibility with large-scale, roll-to-roll manufacturing processes. In this review, we focus on the solution deposition of charge transport layers and perovskite absorption layer in both mesoporous and planar structural PSC devices. Furthermore, the most recent design strategies via solution deposition are presented as well, which have been explored to enlarge the active area, enhance the crystallization and passivate the defects, leading to the performance improvement of PSC devices.展开更多
Perovskite solar cells(PSCs) have revolutionized photovoltaic research. As a result, a certified power conversion efficiency(PCE) of 25.5% was recorded in late 2020. Although this efficiency is comparable with silicon...Perovskite solar cells(PSCs) have revolutionized photovoltaic research. As a result, a certified power conversion efficiency(PCE) of 25.5% was recorded in late 2020. Although this efficiency is comparable with silicon solar cells;some issues remain partially unsolved, such as lead toxicity, instability of perovskite materials under continuous illumination, moisture and oxygen, and degradation of the metallic counter electrodes. As an alternative to tackle this last concern, carbon materials have been recently used, due to their good electrical and thermal conductivity, and chemical stability, which makes them one of the most promising materials to replace metallic counter electrodes in the fabrication of PSCs. This review highlights the recent advances of carbon-based PSCs, where the carbon electrode(CE) is the main actor.CEs have become very promising candidates for PSCs;they are mainly fabricated using a simple combination of graphite and carbon black powders embedded in a binder matrix, giving a paste that is then solution-processable, resulting in devices with improved quality stability, when compared to metallic electrodes. In this review, CE’s composition is emphasized, since it can give both, high and lowtemperature processed electrodes, compatible with different device configurations. Finally, the tendencies and opportunities to use CE in PSCs devices are presented.展开更多
Electroluminescent devices based on organic semiconductors have attracted significant attention owing to their promising applications in flat-panel displays.The conventional display pixel consisting of side-by-side ar...Electroluminescent devices based on organic semiconductors have attracted significant attention owing to their promising applications in flat-panel displays.The conventional display pixel consisting of side-by-side arrayed red,green and blue subpixels represents the mature technology but bears an intrinsic deficiency of a low pixel density.Constructing an individual color-tunable pixel that comprises vertically stacked subpixels is considered an advanced technology.Although color-tunable organic light-emitting diodes(OLEDs)have been fabricated using the vacuum deposition of small molecules,the solution processing of conjugated polymers would enable a much simpler and inexpensive manufacturing process.Here we present the all-solution processing of color-tunable OLEDs comprising two vertically stacked polymer emitters.A thin layer of highly conducting and transparent silver nanowires is introduced as the intermediate charge injection contact,which allows the emission spectrum and intensity of the tandem devices to be seamlessly manipulated.To demonstrate a viable application of this technology,a 4-by-4 pixelated matrix color-tunable display was fabricated.展开更多
Solution processes have shown excellent potential for application to the growth of single-crystal materials. We have developed a confined-solution method for the preparation of single crystals with a controlled morpho...Solution processes have shown excellent potential for application to the growth of single-crystal materials. We have developed a confined-solution method for the preparation of single crystals with a controlled morphology. By confining the precursor solution within a micrometer-thick cavity and then controlling the saturation by adjusting the temperature gradient and fluid flow, high-quality CHBNH3PbBr3 single crystals with tunable morphologies could be obtained. The morphologies of the CH3NH3PbBr3 can be adjusted from sub-square centimeter-scale thin sheets that are square or rectangular, to one-dimensional wires with lengths in the order of centimeters, simply by changing the temperature. The thicknesses of the CH3NH3PbBr3 sheets could be adjusted from hundreds of nanometers to tens of microns. The CH3NHBPbBr3 sheets feature very clean surfaces with an atomic-scale roughness. This simple strategy provides a means of growing high-quality single crystals with clean surfaces, which realize high levels of performance when applied to devices.展开更多
Lanthanide-containing persistent luminescence materials are promising candidates for a wide range of applications by virtue of splendid superiorities in afterglow performance.However,it is a crucial challenge to achie...Lanthanide-containing persistent luminescence materials are promising candidates for a wide range of applications by virtue of splendid superiorities in afterglow performance.However,it is a crucial challenge to achieve high-quality afterglow materials at the attractive nanoscale,with uniform size,controllable morphology,and satisfying brightness.Herein,a bottom-up approach was developed to construct the high-quality afterglow nanoparticles,incorporating luminescent lanthanide complex and organic molecular ingredients under mild conditions.These nanoparticles exhibited intrinsic lanthanide luminescence with superbright red afterglow(>10 cd m^(−2))in a homogeneous solution.The afterglow solution with excellent processability can serve as ideal building blocks for the on-demand fabrication of functional nanomaterials.Water-dispersible afterglow nanoparticles with state-of-the-art high brightness were uniformly constructed to perform whole-blood lateral flow assay of procalcitonin with a naked-eye detection limit of 0.5 ng mL^(−1),promoting the point-of-care testing development.展开更多
A simple and effective photochemical method was developed for cross-linking of polymer gate dielectrics. Laborious synthetic processes for functionalizing polymer dielectrics with photo-cross-linkable groups were avoi...A simple and effective photochemical method was developed for cross-linking of polymer gate dielectrics. Laborious synthetic processes for functionalizing polymer dielectrics with photo-cross-linkable groups were avoided. The photo-cross-linker, BBP-4, was added into host polymers by simple solution blending process, which was capable of abstracting hydrogen atoms from polymers containing active C--H groups upon exposure to ultraviolet (UV) radiation. The cross-linking can be completed with a relatively long wavelength UV light (365 nm). The approach has been applied to methacrylate and styrenic polymers such as commercial poly(methylmethacrylate) (PMMA), poly(iso-butylmethacrylate) (PiBMA) and poly(4-methylstyrene) (PMS). The cross-linked networks enhanced dielectric properties and solvent resistance of the thin films. The bottom-gate organic field-effect transistors (OFETs) through all solution processes on plastic substrate were fabricated. The OFET devices showed low voltage operation and steep subthreshold swing at relatively small gate dielectric capacitance.展开更多
In this paper, co-doping method is used to improve the current efficiency of solution-processed organic light-emitting diodes(OLEDs). By changing the ratio of two thermally activated delayed fluorescent(TADF) emitters...In this paper, co-doping method is used to improve the current efficiency of solution-processed organic light-emitting diodes(OLEDs). By changing the ratio of two thermally activated delayed fluorescent(TADF) emitters, we studied the performance of device and its mechanism. A solution processed OLED with a structure of indium tin oxide(ITO, 150 nm)/PEDOT:PSS(30 nm)/CBP:4 Cz IPN-x%:4 Cz PN-y%(30 nm)/TPBi(40 nm)/Li F(1 nm)/Al(100 nm) was fabricated. The current efficiencies of 26.6 cd/A and 26.4 cd/A were achieved by the devices with dopant ratio of 6% 4 Cz IPN:2% 4 Cz PN and 2% 4 Cz IPN:6% 4 Cz PN in emitting material layer(EML), respectively. By investigating the tendency of current density change in devices with different doping ratio, we suggested that the enhancement of the current efficiency should be due to the charge transport balance improvement induced by assist dopant in EML.展开更多
Recently results were presented for an R & D program for handling the as-cast billets of an Al-Si-Mg A6060 Al alloy at the solutionizing heat treatment temperature. A reduction in the solutionizing temperature of ...Recently results were presented for an R & D program for handling the as-cast billets of an Al-Si-Mg A6060 Al alloy at the solutionizing heat treatment temperature. A reduction in the solutionizing temperature of the as-cast billets from 585℃ to 540℃ was found. This leads to substantial energy savings without lowering the quality of the final commercial Al profiles. The alloy was treated from the microstructural point of view as an Aluminum Metal-Matrix Composite (Al-MMC). Strengthening of the Al matrix grains during the process was quantified and measured by micro-Vickers hardness testing. A possible application of this is to apply the suggested lower temperature solutionizing process to billets stockpiled in the factory for some months. The alloy undergoes natural aging, a physical process at ambient temperature that alters its microstructural features. Does this aging affect the quality of the lower temperature solutionizing treated profiles? The effect of the natural aging by micro-Vickers hardness testing on some of the same samples of our original work stockpiled in our lab for 10 months was investigated. We applied, further, the Image-Pro Plus image processing software on them in an effort to collect microstructural data and compared them to values taken 10 months earlier. Also we tried an interconnection between the two experimental processes treating the alloy as an Al-MMC.展开更多
The filling and exhausting processes in a pneumatic system are involved with many factors, and numerical solutions of many partial differential equations are always adapted in the study of those processes, which have ...The filling and exhausting processes in a pneumatic system are involved with many factors, and numerical solutions of many partial differential equations are always adapted in the study of those processes, which have been proved to be troublesome and less intuitive. Analytical solutions based on loss-less tube model and average friction tube model are found respectively by using fluid net theory, and they fit the experimental results well. The research work shows that: Fluid net theory can be used to solve the analytical solution of filling and exhausting processes of pneumatic system, and the result of loss-less tube model is close to that of average friction model, so loss-less tube model is recommended since it is simpler, and the difference between filling time and exhausting time is determined by initial and final pressures, the volume of container and the section area of tube, and has nothing to do with the length of the tube.展开更多
This paper considers an eigenvalue problem containing small stochastic processes. For every fixed is, we can use the Prufer substitution to prove the existence of the random solutions lambda(n) and u(n) in the meaning...This paper considers an eigenvalue problem containing small stochastic processes. For every fixed is, we can use the Prufer substitution to prove the existence of the random solutions lambda(n) and u(n) in the meaning of large probability. These solutions can be expanded in epsilon regularly, and their correction terms can be obtained by solving some random linear differential equations.展开更多
Solution processability is a unique property of organic semiconductors. The compact and regular π-π stacking between molecules is paramount in the performance of organic optoelectronic devices. However, it is still ...Solution processability is a unique property of organic semiconductors. The compact and regular π-π stacking between molecules is paramount in the performance of organic optoelectronic devices. However, it is still a challenge to improve their stacking quality without sacrificing the solution-processability from the aspect of materials design. Here, delicately engineered additives are presented to promote the formation of ordered aggregation of conjugated molecules by regulating their nucleation and growth dynamics. Intriguingly, the long-chain BTP-eC9-4F molecules can realize ordered aggregation comparable to short-chain ones without sacrificing processability. The domain size of BTP-eC9-4F aggregation is enlarged from 24.2 to 32.2 nm in blend films.Thereby exciton diffusion and charge transport become faster, contributing to the suppression of recombination losses. As a result, a power conversion efficiency of 19.2% is achieved in D18:BTP-eC9-4F based organic photovoltaics. Our findings demonstrate a facile strategy to improve the packing quality of solution-processed organic semiconductors for high-efficiency photovoltaics and beyond photovoltaics.展开更多
In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in im...In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in implementing solution-processed perovskite top cell on the rough surface of the bottom cells.Here,we firstly demonstrate an efficient monolithic two-terminal perovskite/CZTSSe tandem solar cell by significantly reducing the surface roughness of the electrochemically deposited CZTSSe bottom cell.The surface roughness(R_(rms))of the CZTSSe thin film could be reduced from 424 to 86 nm by using the potentiostatic mode rather than using the conventional galvanostatic mode,which can be further reduced to 22 nm after the subsequent ion-milling process.The perovskite top cell with a bandgap of 1.65 eV could be prepared using a solution process on the flattened CZTSSe bottom cell,resulting in the efficient perovskite/CZTSSe tandem solar cells.After the current matching between two subcells involving the thickness control of the perovskite layer,the best performing tandem device exhibited a high conversion efficiency of 17.5%without the hysteresis effect.展开更多
Molybdenum oxide(MoO_(x))is a commonly used hole extraction material in organic photovoltaics.The MoO_(x) interlayer is deposited typically via thermal evaporation in vacuum.To meet the need for rollto-roll manufactur...Molybdenum oxide(MoO_(x))is a commonly used hole extraction material in organic photovoltaics.The MoO_(x) interlayer is deposited typically via thermal evaporation in vacuum.To meet the need for rollto-roll manufacturing,solution processing of MoO_(x) without post-annealing treatment is essential.Herein,we demonstrate an effective approach to produce annealing-free,alcohol-processable MoO_(x) anode interlayers,namely S-MoO_(x),by utilizing the bis(catecholato)diboron(B_(2) Cat_(2))molecule to modify the surface oxygen sites in MoO_(x).The formation of surface diboron-oxygen complex enables the alcohol solubility of S-MoO_(x).An enhanced light utilization is realized in the S-MoO_(x)-based organic photovoltaics.This affords a superior short-circuit current density(Jsc)close to 26 mA cm^(-2) and ultimately a high power-conversion efficiency(PCE)of 15.2%in the representative PM6:Y6 based inverted OPVs,which is one of the highest values in the inverted OPVs using an as-cast S-MoO_(x) anode interlayer.展开更多
The solute redistribution in directional melting process is theoretically studied. Based on quantitative evaluations, uniform.solute distribution in liquid and a quasi-steady solute distribution in solid are supposed....The solute redistribution in directional melting process is theoretically studied. Based on quantitative evaluations, uniform.solute distribution in liquid and a quasi-steady solute distribution in solid are supposed. The discussion on the solute balance comes to a simple model for the solute redistribution in directional melting process. As an example, the variation of liquid composition during melting process of carbon steel is quantitatively evaluated using the model. Results show that the melting of an alloy starts at solidus temperature, but approaches the liquidus temperature after a very short transient process.展开更多
All-solution-processed inverted quantum dot(QD)light-emitting diodes(QLEDs)with transparent bottom cathodes can be directly connected to the n-type thin-film transistors,offering a feasible solution for low-cost activ...All-solution-processed inverted quantum dot(QD)light-emitting diodes(QLEDs)with transparent bottom cathodes can be directly connected to the n-type thin-film transistors,offering a feasible solution for low-cost active matrix-driven QD displays.However,the subsequent solution-deposition of the hole-transporting layer destroys the underneath QD films,resulting in largely deteriorated device performance.Various strategies have been implemented to prevent QD film from dissolution,but all at a heavy cost of device performance suffering from either reduced efficiency or increased driving voltage.Here,a facile and effective water-treatment approach for QD film to fabricate inverted QLEDs through all solution processing is reported.The water treatment substitutes the long-chain oleate ligands with hydroxyl groups,resulting in significantly improved non-polar solvent resistance of the QD films.Importantly,the QD films reserve their excellent photoluminescence efficiency after water treatment.With the water-treated QD film as the emissive layer,all-solution-processed inverted red QLED with a peak external quantum efficiency of 19.6%,a turn-on voltage of 1.8 V,and a T50 operational lifetime of 150,000 h at 100 cd·m^(-2) was achieved.Furthermore,efficient and low-voltage-driven green and blue QLEDs can also be prepared with this method.This work provides a feasible strategy for the fabrication of high-performance all-solution-processed inverted QLEDs,paving the way toward achieving QLEDs by all ink-jet printing.展开更多
Three carbazole-based multiple resonance dendrimers namely D1-BNN,D2-BNN and D3-BNN,are developed for solution-processed narrowband blue organic light-emitting diodes(OLEDs)by introducing the first-,second-,and third-...Three carbazole-based multiple resonance dendrimers namely D1-BNN,D2-BNN and D3-BNN,are developed for solution-processed narrowband blue organic light-emitting diodes(OLEDs)by introducing the first-,second-,and third-generation carbazole dendrons in periphery of boron,nitrogen-doped polycyclic aromatic hydrocarbon skeleton.Different from D1-BNN containing first-generation carbazole dendron showing moderate photoluminescent quantum efficiency(PLQY)of 68%in solid state and broadened emission bands with full-width at half maximum(FWHM)increasing from 26 nm to 34 nm upon doping concentration growing from 10 wt%to 40 wt%,D3-BNN with the third-generation carbazole dendron exhibits high PLQY of 92%and weak dependence of photoluminescent spectra on doping concentration,which can remain narrowband emissions with unchanged FWHM of 24 nm at same doping concentration range.Solution-processed OLEDs employing D3-BNN as emitter reveal blue electroluminescence at 477 nm with FWHM of 24 nm,and maximum external quantum efficiency(EQE)of 17.3%which is kept at 14.4%at doping concentration of 40 wt%,much superior than the D1-BNN devices showing maximum EQE of 13.0%that drops to 3.7%at 40 wt%doping concentration.展开更多
Solubility enhancement has been a priority to overcome poor solubility with optoelectronic molecules for solution-processable devices. This study aims to obtain experimental data on the effect of particle sizes on the...Solubility enhancement has been a priority to overcome poor solubility with optoelectronic molecules for solution-processable devices. This study aims to obtain experimental data on the effect of particle sizes on the solubility properties of several typical optoelectronic molecules in organic solvents, including the solubility results of 1,3-bis(9-carbazolyl)benzene(m CP), 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)ben zene(TPBi) and 2-(4-tert-butylphenyl)-5-(4-biphenyl)-1,3,4-oxadiazole(PBD) in ethanol and acetonitrile,respectively. Nanoparticles of m CP, TPBi and PBD with sizes from dozens to several hundred nanometers were prepared by solvent antisolvent precipitation method and their solubility were determined by using isothermal saturation method. The saturation solubility of nanoparticles of three kinds of optoelectronic molecules exhibited increase of 12.9%-25.7% in comparison to the same raw materials in the form of microparticles. The experimental evidence indicates that nanonization technology is a feasible way to make optoelectronic molecules dissolve in liquids with enhanced solubility.展开更多
Solution-processed conducting polymers(CPs)are emerging as promising multifunctional materials and are motivating the development of several electronic applications.However,there are fewer highperformance electron con...Solution-processed conducting polymers(CPs)are emerging as promising multifunctional materials and are motivating the development of several electronic applications.However,there are fewer highperformance electron conduction-dominated n-type CPs than p-types.Thus,the exploration of other material designs and synthesis methods is required.Accordingly,we developed a facile metal catalystfree method by combining polymerization and in situ n-doping to produce an n-type conducting polymer,poly(benzodithiophenedione)(PBTDO).The doping procedure enabled interaction between the charged conjugated backbones and solvent,dimethyl sulfoxide,making the doped conducting polymer soluble without the assistance of side chains or surfactants.PBTDO exhibited an extremely low-lying reduction level,moderate conductivity,and good air stability with potential applications in n-type organic thermoelectric devices.Moreover,it was found that the in situ doping efficiency in the reaction was highly dependent on the energy level and backbone planarity.Doping cannot occur for polymers with a high lowest unoccupied molecular orbital level and distorted conjugated chains prevent a high doping efficiency from being obtained.This study gains deeper insight into the n-doping mechanisms of conjugated polymers,with guidance for the design of highperformance n-type CPs.展开更多
基金Project supported by the National Key Research and Development Program of China(2016YFB0700903)the National Natural Science Foundation of China(5159088251401054)。
文摘It is confirmed that phase homogenization is very important for improving the magnetic properties of 2:17-type Sm-Co sintered magnets,In this work,the influence of solid solution process on microstructure and magnetic properties of the Sm(CobalFe0.233Cu0.073Zr0.024)7.6 sintered magnets was systematically studied.With the solid-solution treating duration(tS)increasing from 0 to 4 h,intrinsic coercivity(Hcj)increases from 12.83 to 36.54 kOe,magnetic field at knee-point(Hknee)increases from2.76 to 19.14 kOe,and the maximum energy product increases from 19.79 to 29.48 MGOe.The electron probe microanalyzer results reveal that there mainly exist gray and dark regions besides"white"rare earth-rich phase,and the conte nt of Sm,Fe and Cu elements for the two kinds of regions changes a lot for the specimens,Furthermore,with tS increasing up to 4 h,the elements content deviation between the gray and dark regions becomes small gradually from 3.94 at%to 0.27 at%,7.66 at%to 0.21 at%and 7.27 at%to 0.16 at%for Sm,Fe and Cu elements,respectively.Moreover,transmission electron microscopy results show that the distribution of cell size is much more concentrated for aged specimens when tS is 4 h.It is also found that the Cu concentration at cell boundaries for the 4 h solid-solution treatment case shows relatively higher values and greater concentration gradient(1.94 at%/nm).It is verified that sufficient solution treatment duration is prerequisite to form these homogeneous microstructural features,which are the key points for obtaining both high Hcj and Hknee.
基金The authors acknowledge funding from the National Natural Science Foundation of China(61974150 and 51773213)Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-JSC047)+1 种基金the Fundamental Research Funds for the Central Universities,the CAS-EU S&T cooperation partner program(174433KYSB20150013)the Natural Science Foundation of Ningbo(2018A610135).
文摘Nonfullerene organic solar cells(OSCs)have achieved breakthrough with pushing the efficiency exceeding 17%.While this shed light on OSC commercialization,high-performance flexible OSCs should be pursued through solution manufacturing.Herein,we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid(CF3SO3H).Through a low-concentration and low-temperature CF3SO3H doping,the conducting polymer anodes exhibited a main sheet resistance of 35Ωsq−1(minimum value:32Ωsq−1),a raised work function(≈5.0 eV),a superior wettability,and a high electrical stability.The high work function minimized the energy level mismatch among the anodes,hole-transporting layers and electron-donors of the active layers,thereby leading to an enhanced carrier extraction.The solution-processed flexible OSCs yielded a record-high efficiency of 16.41%(maximum value:16.61%).Besides,the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85°C,demonstrating a high flexibility and a good thermal stability.
基金Projects(51673214,51673218,61774170)supported by the National Natural Science Foundation of ChinaProject(2017YFA0206600)supported by the National Key Research and Development Program of China。
文摘Perovskite solar cells(PSCs) have emerged as one of the most promising candidates for photovoltaic applications. Low-cost, low-temperature solution processes including coating and printing techniques makes PSCs promising for the greatly potential commercialization due to the scalability and compatibility with large-scale, roll-to-roll manufacturing processes. In this review, we focus on the solution deposition of charge transport layers and perovskite absorption layer in both mesoporous and planar structural PSC devices. Furthermore, the most recent design strategies via solution deposition are presented as well, which have been explored to enlarge the active area, enhance the crystallization and passivate the defects, leading to the performance improvement of PSC devices.
基金financial support of the Colombia Scientific Program within the framework of the call Ecosistema Cientifíco (Contract FP44842-218-2018)。
文摘Perovskite solar cells(PSCs) have revolutionized photovoltaic research. As a result, a certified power conversion efficiency(PCE) of 25.5% was recorded in late 2020. Although this efficiency is comparable with silicon solar cells;some issues remain partially unsolved, such as lead toxicity, instability of perovskite materials under continuous illumination, moisture and oxygen, and degradation of the metallic counter electrodes. As an alternative to tackle this last concern, carbon materials have been recently used, due to their good electrical and thermal conductivity, and chemical stability, which makes them one of the most promising materials to replace metallic counter electrodes in the fabrication of PSCs. This review highlights the recent advances of carbon-based PSCs, where the carbon electrode(CE) is the main actor.CEs have become very promising candidates for PSCs;they are mainly fabricated using a simple combination of graphite and carbon black powders embedded in a binder matrix, giving a paste that is then solution-processable, resulting in devices with improved quality stability, when compared to metallic electrodes. In this review, CE’s composition is emphasized, since it can give both, high and lowtemperature processed electrodes, compatible with different device configurations. Finally, the tendencies and opportunities to use CE in PSCs devices are presented.
基金supported by the Cluster of Excellence‘Engineering of Advanced Materials’(EAM)at the University of Erlangen-Nurembergthe support of the EU-project SOLPROCEL(‘Solution processed high performance transparent organic photovoltaic cells’,Grant No.604506)+2 种基金the financial support from the China Scholarship Council(CSC)the financial support from the South China University of Technology and Deutscher Akademischer Austausch Dienst(DAAD)the financial support through the‘Aufbruch Bayern’initiative of the state of Bavaria.
文摘Electroluminescent devices based on organic semiconductors have attracted significant attention owing to their promising applications in flat-panel displays.The conventional display pixel consisting of side-by-side arrayed red,green and blue subpixels represents the mature technology but bears an intrinsic deficiency of a low pixel density.Constructing an individual color-tunable pixel that comprises vertically stacked subpixels is considered an advanced technology.Although color-tunable organic light-emitting diodes(OLEDs)have been fabricated using the vacuum deposition of small molecules,the solution processing of conjugated polymers would enable a much simpler and inexpensive manufacturing process.Here we present the all-solution processing of color-tunable OLEDs comprising two vertically stacked polymer emitters.A thin layer of highly conducting and transparent silver nanowires is introduced as the intermediate charge injection contact,which allows the emission spectrum and intensity of the tandem devices to be seamlessly manipulated.To demonstrate a viable application of this technology,a 4-by-4 pixelated matrix color-tunable display was fabricated.
文摘Solution processes have shown excellent potential for application to the growth of single-crystal materials. We have developed a confined-solution method for the preparation of single crystals with a controlled morphology. By confining the precursor solution within a micrometer-thick cavity and then controlling the saturation by adjusting the temperature gradient and fluid flow, high-quality CHBNH3PbBr3 single crystals with tunable morphologies could be obtained. The morphologies of the CH3NH3PbBr3 can be adjusted from sub-square centimeter-scale thin sheets that are square or rectangular, to one-dimensional wires with lengths in the order of centimeters, simply by changing the temperature. The thicknesses of the CH3NH3PbBr3 sheets could be adjusted from hundreds of nanometers to tens of microns. The CH3NHBPbBr3 sheets feature very clean surfaces with an atomic-scale roughness. This simple strategy provides a means of growing high-quality single crystals with clean surfaces, which realize high levels of performance when applied to devices.
基金supported by the National Key R&D Program of China(2017YFA0205100)the National Natural Science Foundation of China(21937003)。
文摘Lanthanide-containing persistent luminescence materials are promising candidates for a wide range of applications by virtue of splendid superiorities in afterglow performance.However,it is a crucial challenge to achieve high-quality afterglow materials at the attractive nanoscale,with uniform size,controllable morphology,and satisfying brightness.Herein,a bottom-up approach was developed to construct the high-quality afterglow nanoparticles,incorporating luminescent lanthanide complex and organic molecular ingredients under mild conditions.These nanoparticles exhibited intrinsic lanthanide luminescence with superbright red afterglow(>10 cd m^(−2))in a homogeneous solution.The afterglow solution with excellent processability can serve as ideal building blocks for the on-demand fabrication of functional nanomaterials.Water-dispersible afterglow nanoparticles with state-of-the-art high brightness were uniformly constructed to perform whole-blood lateral flow assay of procalcitonin with a naked-eye detection limit of 0.5 ng mL^(−1),promoting the point-of-care testing development.
基金financially supported by the National Natural Science Foundation of China (Nos.21674060,21274087,61674102,and 61334008)National Key R&D Program (No.2016YFB0401100)
文摘A simple and effective photochemical method was developed for cross-linking of polymer gate dielectrics. Laborious synthetic processes for functionalizing polymer dielectrics with photo-cross-linkable groups were avoided. The photo-cross-linker, BBP-4, was added into host polymers by simple solution blending process, which was capable of abstracting hydrogen atoms from polymers containing active C--H groups upon exposure to ultraviolet (UV) radiation. The cross-linking can be completed with a relatively long wavelength UV light (365 nm). The approach has been applied to methacrylate and styrenic polymers such as commercial poly(methylmethacrylate) (PMMA), poly(iso-butylmethacrylate) (PiBMA) and poly(4-methylstyrene) (PMS). The cross-linked networks enhanced dielectric properties and solvent resistance of the thin films. The bottom-gate organic field-effect transistors (OFETs) through all solution processes on plastic substrate were fabricated. The OFET devices showed low voltage operation and steep subthreshold swing at relatively small gate dielectric capacitance.
基金supported by the National High Technology Research and Development Program of China (No.2012AA011901)the National Program on Key Basic Research Project of China (No.2012CB723406)+2 种基金the National Natural Science Foundation of China (No.51573036)the Fundamental Research Funds for the Central Universities of China (No.JD2016JGPY0007)the Industry-University-Research Cooperation Project of Aviation Industry Corporation of China (No.CXY2013HFGD20)。
文摘In this paper, co-doping method is used to improve the current efficiency of solution-processed organic light-emitting diodes(OLEDs). By changing the ratio of two thermally activated delayed fluorescent(TADF) emitters, we studied the performance of device and its mechanism. A solution processed OLED with a structure of indium tin oxide(ITO, 150 nm)/PEDOT:PSS(30 nm)/CBP:4 Cz IPN-x%:4 Cz PN-y%(30 nm)/TPBi(40 nm)/Li F(1 nm)/Al(100 nm) was fabricated. The current efficiencies of 26.6 cd/A and 26.4 cd/A were achieved by the devices with dopant ratio of 6% 4 Cz IPN:2% 4 Cz PN and 2% 4 Cz IPN:6% 4 Cz PN in emitting material layer(EML), respectively. By investigating the tendency of current density change in devices with different doping ratio, we suggested that the enhancement of the current efficiency should be due to the charge transport balance improvement induced by assist dopant in EML.
文摘Recently results were presented for an R & D program for handling the as-cast billets of an Al-Si-Mg A6060 Al alloy at the solutionizing heat treatment temperature. A reduction in the solutionizing temperature of the as-cast billets from 585℃ to 540℃ was found. This leads to substantial energy savings without lowering the quality of the final commercial Al profiles. The alloy was treated from the microstructural point of view as an Aluminum Metal-Matrix Composite (Al-MMC). Strengthening of the Al matrix grains during the process was quantified and measured by micro-Vickers hardness testing. A possible application of this is to apply the suggested lower temperature solutionizing process to billets stockpiled in the factory for some months. The alloy undergoes natural aging, a physical process at ambient temperature that alters its microstructural features. Does this aging affect the quality of the lower temperature solutionizing treated profiles? The effect of the natural aging by micro-Vickers hardness testing on some of the same samples of our original work stockpiled in our lab for 10 months was investigated. We applied, further, the Image-Pro Plus image processing software on them in an effort to collect microstructural data and compared them to values taken 10 months earlier. Also we tried an interconnection between the two experimental processes treating the alloy as an Al-MMC.
基金This project is supported by National Natural Science Foundation of China(No.50575209).
文摘The filling and exhausting processes in a pneumatic system are involved with many factors, and numerical solutions of many partial differential equations are always adapted in the study of those processes, which have been proved to be troublesome and less intuitive. Analytical solutions based on loss-less tube model and average friction tube model are found respectively by using fluid net theory, and they fit the experimental results well. The research work shows that: Fluid net theory can be used to solve the analytical solution of filling and exhausting processes of pneumatic system, and the result of loss-less tube model is close to that of average friction model, so loss-less tube model is recommended since it is simpler, and the difference between filling time and exhausting time is determined by initial and final pressures, the volume of container and the section area of tube, and has nothing to do with the length of the tube.
文摘This paper considers an eigenvalue problem containing small stochastic processes. For every fixed is, we can use the Prufer substitution to prove the existence of the random solutions lambda(n) and u(n) in the meaning of large probability. These solutions can be expanded in epsilon regularly, and their correction terms can be obtained by solving some random linear differential equations.
基金supported by the National Natural Science Foundation of China(52303239)the Natural Science Foundation of Shandong Province(ZR2022QB141,2023HWYQ-087)+1 种基金Jiangsu Key Laboratory for Carbon-Based Functional Materials&Devices,Soochow University(KJS2209)Sichuan Science and Technology Program(2023NSFSC0990)。
文摘Solution processability is a unique property of organic semiconductors. The compact and regular π-π stacking between molecules is paramount in the performance of organic optoelectronic devices. However, it is still a challenge to improve their stacking quality without sacrificing the solution-processability from the aspect of materials design. Here, delicately engineered additives are presented to promote the formation of ordered aggregation of conjugated molecules by regulating their nucleation and growth dynamics. Intriguingly, the long-chain BTP-eC9-4F molecules can realize ordered aggregation comparable to short-chain ones without sacrificing processability. The domain size of BTP-eC9-4F aggregation is enlarged from 24.2 to 32.2 nm in blend films.Thereby exciton diffusion and charge transport become faster, contributing to the suppression of recombination losses. As a result, a power conversion efficiency of 19.2% is achieved in D18:BTP-eC9-4F based organic photovoltaics. Our findings demonstrate a facile strategy to improve the packing quality of solution-processed organic semiconductors for high-efficiency photovoltaics and beyond photovoltaics.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government's Ministry of Science and ICT(NRF-2022M3J1A1063226,2021M3H4A1A 03057403,2017M3D1A1039377,and NRF-2021R1C1C1011882)supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(No.20203040010320)
文摘In spite of the high potential economic feasibility of the tandem solar cells consisting of the halide perovskite and the kesterite Cu2ZnSn(S,Se)4(CZTSSe),they have rarely been demonstrated due to the difficulty in implementing solution-processed perovskite top cell on the rough surface of the bottom cells.Here,we firstly demonstrate an efficient monolithic two-terminal perovskite/CZTSSe tandem solar cell by significantly reducing the surface roughness of the electrochemically deposited CZTSSe bottom cell.The surface roughness(R_(rms))of the CZTSSe thin film could be reduced from 424 to 86 nm by using the potentiostatic mode rather than using the conventional galvanostatic mode,which can be further reduced to 22 nm after the subsequent ion-milling process.The perovskite top cell with a bandgap of 1.65 eV could be prepared using a solution process on the flattened CZTSSe bottom cell,resulting in the efficient perovskite/CZTSSe tandem solar cells.After the current matching between two subcells involving the thickness control of the perovskite layer,the best performing tandem device exhibited a high conversion efficiency of 17.5%without the hysteresis effect.
基金supported by the National Natural Science Foundation of China(62074022,62074149)the Natural Science Foundation of Chongqing(cstc2018jszx-cyzdX0137)+3 种基金the Chongqing Science Foundation for Distinguished Young Scholars(cstc2020jcyj-jq0112)the“Artificial Intelligence”Key Project of Chongqing(cstc2017rgzn-zdyf0120)the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2019107)the Fundamental Research Funds for the Central Universities(2020CDJQY-A055,2019CDXYDL0007)。
文摘Molybdenum oxide(MoO_(x))is a commonly used hole extraction material in organic photovoltaics.The MoO_(x) interlayer is deposited typically via thermal evaporation in vacuum.To meet the need for rollto-roll manufacturing,solution processing of MoO_(x) without post-annealing treatment is essential.Herein,we demonstrate an effective approach to produce annealing-free,alcohol-processable MoO_(x) anode interlayers,namely S-MoO_(x),by utilizing the bis(catecholato)diboron(B_(2) Cat_(2))molecule to modify the surface oxygen sites in MoO_(x).The formation of surface diboron-oxygen complex enables the alcohol solubility of S-MoO_(x).An enhanced light utilization is realized in the S-MoO_(x)-based organic photovoltaics.This affords a superior short-circuit current density(Jsc)close to 26 mA cm^(-2) and ultimately a high power-conversion efficiency(PCE)of 15.2%in the representative PM6:Y6 based inverted OPVs,which is one of the highest values in the inverted OPVs using an as-cast S-MoO_(x) anode interlayer.
基金The research is funded by the National Natural Science FOundation of China! (No.59931030)
文摘The solute redistribution in directional melting process is theoretically studied. Based on quantitative evaluations, uniform.solute distribution in liquid and a quasi-steady solute distribution in solid are supposed. The discussion on the solute balance comes to a simple model for the solute redistribution in directional melting process. As an example, the variation of liquid composition during melting process of carbon steel is quantitatively evaluated using the model. Results show that the melting of an alloy starts at solidus temperature, but approaches the liquidus temperature after a very short transient process.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.61905230,52072355,11904345,52103241,and 61904160)Natural Science Foundation of Zhejiang Province(No.LQ19F040004)the Liu Zugang Expert Workstation of Yunnan Province。
文摘All-solution-processed inverted quantum dot(QD)light-emitting diodes(QLEDs)with transparent bottom cathodes can be directly connected to the n-type thin-film transistors,offering a feasible solution for low-cost active matrix-driven QD displays.However,the subsequent solution-deposition of the hole-transporting layer destroys the underneath QD films,resulting in largely deteriorated device performance.Various strategies have been implemented to prevent QD film from dissolution,but all at a heavy cost of device performance suffering from either reduced efficiency or increased driving voltage.Here,a facile and effective water-treatment approach for QD film to fabricate inverted QLEDs through all solution processing is reported.The water treatment substitutes the long-chain oleate ligands with hydroxyl groups,resulting in significantly improved non-polar solvent resistance of the QD films.Importantly,the QD films reserve their excellent photoluminescence efficiency after water treatment.With the water-treated QD film as the emissive layer,all-solution-processed inverted red QLED with a peak external quantum efficiency of 19.6%,a turn-on voltage of 1.8 V,and a T50 operational lifetime of 150,000 h at 100 cd·m^(-2) was achieved.Furthermore,efficient and low-voltage-driven green and blue QLEDs can also be prepared with this method.This work provides a feasible strategy for the fabrication of high-performance all-solution-processed inverted QLEDs,paving the way toward achieving QLEDs by all ink-jet printing.
基金financially supported by the National Natural Science Foundation of China(Nos.52073282,52122309,51833009 and 21975247)the CAS-Croucher Funding Scheme for Joint Laboratories:Poly U-CIAC Joint Laboratory(No.121522KYSB20200040)the Open Project of State Key Laboratory of Supramolecular Structure and Materials(No.sklssm2023019)。
文摘Three carbazole-based multiple resonance dendrimers namely D1-BNN,D2-BNN and D3-BNN,are developed for solution-processed narrowband blue organic light-emitting diodes(OLEDs)by introducing the first-,second-,and third-generation carbazole dendrons in periphery of boron,nitrogen-doped polycyclic aromatic hydrocarbon skeleton.Different from D1-BNN containing first-generation carbazole dendron showing moderate photoluminescent quantum efficiency(PLQY)of 68%in solid state and broadened emission bands with full-width at half maximum(FWHM)increasing from 26 nm to 34 nm upon doping concentration growing from 10 wt%to 40 wt%,D3-BNN with the third-generation carbazole dendron exhibits high PLQY of 92%and weak dependence of photoluminescent spectra on doping concentration,which can remain narrowband emissions with unchanged FWHM of 24 nm at same doping concentration range.Solution-processed OLEDs employing D3-BNN as emitter reveal blue electroluminescence at 477 nm with FWHM of 24 nm,and maximum external quantum efficiency(EQE)of 17.3%which is kept at 14.4%at doping concentration of 40 wt%,much superior than the D1-BNN devices showing maximum EQE of 13.0%that drops to 3.7%at 40 wt%doping concentration.
基金financial support from National Natural Science Foundation of China (22288102)the Fundamental Research Funds for the Central Universities of China (buctrc202016)。
文摘Solubility enhancement has been a priority to overcome poor solubility with optoelectronic molecules for solution-processable devices. This study aims to obtain experimental data on the effect of particle sizes on the solubility properties of several typical optoelectronic molecules in organic solvents, including the solubility results of 1,3-bis(9-carbazolyl)benzene(m CP), 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)ben zene(TPBi) and 2-(4-tert-butylphenyl)-5-(4-biphenyl)-1,3,4-oxadiazole(PBD) in ethanol and acetonitrile,respectively. Nanoparticles of m CP, TPBi and PBD with sizes from dozens to several hundred nanometers were prepared by solvent antisolvent precipitation method and their solubility were determined by using isothermal saturation method. The saturation solubility of nanoparticles of three kinds of optoelectronic molecules exhibited increase of 12.9%-25.7% in comparison to the same raw materials in the form of microparticles. The experimental evidence indicates that nanonization technology is a feasible way to make optoelectronic molecules dissolve in liquids with enhanced solubility.
基金grant from the Ministry of Science and Technology of the People’s Republic of China(MOST),the Basic and Applied Basic Research Major Program of Guangdong Province(grant no.2019B030302007)the National Natural Science Foundation of China(grant no.U21A6002)the Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials(grant no.2019B121205002).
文摘Solution-processed conducting polymers(CPs)are emerging as promising multifunctional materials and are motivating the development of several electronic applications.However,there are fewer highperformance electron conduction-dominated n-type CPs than p-types.Thus,the exploration of other material designs and synthesis methods is required.Accordingly,we developed a facile metal catalystfree method by combining polymerization and in situ n-doping to produce an n-type conducting polymer,poly(benzodithiophenedione)(PBTDO).The doping procedure enabled interaction between the charged conjugated backbones and solvent,dimethyl sulfoxide,making the doped conducting polymer soluble without the assistance of side chains or surfactants.PBTDO exhibited an extremely low-lying reduction level,moderate conductivity,and good air stability with potential applications in n-type organic thermoelectric devices.Moreover,it was found that the in situ doping efficiency in the reaction was highly dependent on the energy level and backbone planarity.Doping cannot occur for polymers with a high lowest unoccupied molecular orbital level and distorted conjugated chains prevent a high doping efficiency from being obtained.This study gains deeper insight into the n-doping mechanisms of conjugated polymers,with guidance for the design of highperformance n-type CPs.