We used the surface-pretreated graphite paper(Gp)as a carrier and loaded BiOCl with high selectivity to Cl^(-)on its surface by solvothermal method to form BiOCl@Gp electrode.The morphology,structure,and composition o...We used the surface-pretreated graphite paper(Gp)as a carrier and loaded BiOCl with high selectivity to Cl^(-)on its surface by solvothermal method to form BiOCl@Gp electrode.The morphology,structure,and composition of the materials were characterized by scanning electron microscopy and nitrogen adsorption/desorption,and the results showed that the spherical BiOCl particles were uniformly dispersed on the surface of the Gp,forming a mesoporous BiOCl@Gp composite with a specific surface area of 22.82 m^(2)/g and a pore volume of 0.043 cm3/g.Furthermore,cyclic voltammetry and electrochemical impedance spectroscopy were used to test the electrochemical properties of the composites,and the stability of BiOCl and the high conductivity of Gp were synergistic,the BiOCl@Gp exhibited a specific capacitance of 30.2 F·g^(-1) at a current density of 0.5 A·g^(-1),and the selectivity of the BiOCl@Gp materials for Cl^(-)was significantly higher than that of SO_(4)^(2-),NO_(2)^(-),and HCO_(3)^(-).Therefore,BiOCl@Gp composite electrode materials can be used for the selective adsorption of Cl^(-)in wastewater,in order to achieve efficient wastewater recycling.展开更多
Copper nanowires were facilely prepared via a solvothermal method.In this method,cetyitrimethylammonium bromide (CTAB) was used as a soft template,copper nitrate was an inorganic precursor,and absolute ethanol served...Copper nanowires were facilely prepared via a solvothermal method.In this method,cetyitrimethylammonium bromide (CTAB) was used as a soft template,copper nitrate was an inorganic precursor,and absolute ethanol served as a reducing agent as well as a solvent.X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the as-prepared copper nanowires.The as-prepared copper nanowires are fairly uniform and long.The majority of them are longer than 100μm and some even longer than 200μm.Furthermore,most nanowires are quite straight.In addition, The mechanism of the growth process of copper nanowires was discussed.展开更多
With diethylamine as a solvent, ZnSe films were formed on the Si substrate directly from zinc and selenium through the modified solvothermal method. The effects of holding temperature, deposition time and substrate su...With diethylamine as a solvent, ZnSe films were formed on the Si substrate directly from zinc and selenium through the modified solvothermal method. The effects of holding temperature, deposition time and substrate surface treatment on the quality and morphologies of the ZnSe films were investigated. The growth mechanism of ZnSe films was proved to be a layer-nucleation growth process, which was tied in with the Stranski-Krastanov (SK) model. ZnSe films were identified by the X-ray diffraction pattern (XRD), the scanning electron microscope (SEM), the X-ray photoelectron spectroscope (XPS) and the photoluminescence (PL) techniques. The results indicate that the modified solvothermal method with diethylamine as a solvent is suitable to prepare high quality ZnSe films.展开更多
Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. Cd S nanowire array, which i...Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. Cd S nanowire array, which is(002)-orientation growth and approximately perpendicular to Cd foil substrate, has been fabricated by the solvothermal method. In the temperature-dependent photoluminescence, from short wavelength to long wavelength, four peaks can be ascribed to the emissions from the bandgap, the transition from the holes being bound to the donors or the electrons being bound to the acceptors, the transition from Cd interstitials to Cd vacancies, and the transition from S vacancies to the valence band,respectively. In the photoluminescence of 10 K, the emission originated from the bandgap appears in the form of multiple peaks. Two stronger peaks and five weaker peaks can be observed. The energy differences of the adjacent peaks are close to 38 me V, which is ascribed to the LO phonon energy of Cd S. For the multiple peaks of bandgap emission, from low energy to high energy, the first, second, and third peaks are contributed to the third-order, second-order, and first-order phonon replica of the free exciton A, respectively;the fourth peak is originated from the free exciton A;the fifth peak is contributed to the first-order phonon replica of the excitons bound to neutral donors;the sixth and seventh peaks are originated from the excitons bound to neutral donors and the light polarization parallel to the c axis of hexagonal Cd S, respectively.展开更多
Poly(nickel 1,1,2,2-ethenetetrathiolate)(poly[Na_(x)(Ni-ett)])is one of the most promising n-type organic thermoelectric materials which can be used in wearable devices.However,the conventional solution method is time...Poly(nickel 1,1,2,2-ethenetetrathiolate)(poly[Na_(x)(Ni-ett)])is one of the most promising n-type organic thermoelectric materials which can be used in wearable devices.However,the conventional solution method is time-consuming and the prepared poly[Na_(x)(Ni-ett)]usually has poor crystallinity,which does not benefit for achieving high thermoelectric performance.Here,a new one-step solvothermal method under the high reaction temperature and high vapor pressure was developed to prepare poly[Na_(x)(Ni-ett)]with a quite short period.The experimental results show crystallinity and electrical conductivity are greatly enhanced as compared with those prepared by conventional solution method.As a result,a maximum ZT value of 0.04 was achieved at 440 K,which is about four times of the polymer prepared by the conventional solution method.This study may provide a new route to enhance the TE properties of n-type organic thermoelectric materials.展开更多
Sea-urchin-like ZnO nanomaterials were successfully synthesized by decomposition of zinc acetate precursor in the presence of sodium hydroxide and ethylene glycol(EG) in an ethanol solution using a solvothermal meth...Sea-urchin-like ZnO nanomaterials were successfully synthesized by decomposition of zinc acetate precursor in the presence of sodium hydroxide and ethylene glycol(EG) in an ethanol solution using a solvothermal method at 180 ℃ for 12 h.The crystalline phase and morphology of the resultant nanomaterials were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),selected-area electronic diffraction(SAED) and high-resolution electron microscopy(HRTEM).Interestingly, the sizes and prod length of the samples can be easily tuned by changing the amount of directing agent EG and keeping other reaction conditions unchangeable. On the basis of our experimental outcomes, EG-controlled-nucleation-growth formation mechanism was proposed to correspond for the sea-urchin-like ZnO growth processes. And the photoluminescence (PL) spectra of the as-selected samples were measured at room temperature, 480 nm. presenting two emission peaks centered at - 388 and展开更多
Copper indium disulfide(CuInS2) nano-particles were synthesized by solvothermal method at 150 ℃ using copper(?) chloride,indium(Ш) chloride,thiourea and ethanol as raw materials,and characterized by X-ray dif...Copper indium disulfide(CuInS2) nano-particles were synthesized by solvothermal method at 150 ℃ using copper(?) chloride,indium(Ш) chloride,thiourea and ethanol as raw materials,and characterized by X-ray diffraction(XRD),field-emission scanning electron microscope(FESEM),and UV-Vis spectra.The effects of pH value on its micro-structures and optical properties were investigated.The results show that,with the pH value increasing,the particle size of the nano-crystalline CuInS2 increases,and its band gap becomes narrower under alkaline condition.The band gaps of CuInS2 nano-particles are from 1.52 eV to 1.93 eV,which makes them promising candidates as absorber materials for photovoltaic applications.展开更多
In this paper,the CuO-CeO_(2) catalyst was prepared by a direct solvothermal method.The effects of different copper salt precursors(copper nitrate,copper acetate,copper sulfate) on the catalytic performa nce of the pr...In this paper,the CuO-CeO_(2) catalyst was prepared by a direct solvothermal method.The effects of different copper salt precursors(copper nitrate,copper acetate,copper sulfate) on the catalytic performa nce of the prepared catalyst fo r CO oxidation were investigated.The physical and chemical properties of the prepared catalysts were characterized by X-ray diffraction(XRD),Raman spectroscopy,N_(2)physical adsorption,inductively coupled plasma-atomic emission spectrometry(ICP-AES),X-ray photoelectron spectroscopy(XPS),temperature-programmed desorption analysis of CO(CO-TPD),in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTs),and temperature-programmed reduction with H_(2)(H_(2)-TPR).The results show that the CuO-CeO_(2)catalyst prepared with copper acetate as precursor(CC-A) exhibits the best catalytic activity for CO oxidation at low temperatures,with T50and T90values of 62 and 78℃ respectively,which is mainly attributed to its large specific surface area,pore volume,CO adsorption capacity,and large amount and strong reactivity of surface oxygen.However,the CuO-CeO_(2) catalyst prepared with copper nitrate as precursor(CC-N) displays better stability and resistance to water or CO_(2) poisoning than CC-A.展开更多
In this research, cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) and ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) with Ce3+-to-Mo6+ molar ratio of 2:3 were dissolved in 40 ml different ...In this research, cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) and ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) with Ce3+-to-Mo6+ molar ratio of 2:3 were dissolved in 40 ml different solvents of deionized (DI) water, polyethylene glycol (PEG) and ethylene glycol (EG) to form different solutions which were followed by adjusting pH from the traditional values to 7.0 and 10.0 with 1 mol.L-1 sodium hydroxide (NaOH). Subsequently, the solutions were processed by 270-W microwave-hydrother- mal/solvothermal method. Phase, morphology, vibrational modes and photonic properties were fully characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectrophotometry, ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy. The as-synthe-sized products were pure cerium molybdenum oxide (Ce2(MoO4)3) of nanoparticles clustered together as nano- plates in DI water and PEG solvents, and of spindle-like nanoparticles in EG solvent, including the presence of Ce-O-H mode and MoO4 units. The results show that direct energy gaps of the first two have the same value of 2.30 eV, and that of the last is 2.80 eV, including their blue emission at the same wavelength of 488 nm.展开更多
An environmentally friendly method for the synthesis of LiMnPO_(4)/C anode material for lithium-ion batteries by solvothermal method is introduced.The modification of the morphology of this precursor is altered by cha...An environmentally friendly method for the synthesis of LiMnPO_(4)/C anode material for lithium-ion batteries by solvothermal method is introduced.The modification of the morphology of this precursor is altered by changing the ratio of the conditioning solvent(water-ethylene glycol solution)and the order of material addition.Ethylene glycol(EG)exerts a considerable influence on synthesizing LiMnPO_(4)/C flake-like nanocrystal,which benefits the extraction/insertion reaction of lithium ions and improves the electrochemical activity and electrochemical performance of LiMnPO_(4)/C material.When the solvent composition is H_(2)O:EG=1:3,exhibiting exceptional charge/discharge performance and rate capability,the specific discharge capacities are 155.8,153.7,148.8,141.4,129.5,and 112.6 mAh g^(−1) at the 0.1,0.2,0.5,1,2,and 5 C rates,respectively.When the charge-discharge rate returns to 0.1 C,the LiMnPO_(4)/C material shows a reversible discharge specific capacity of 153.7 mAh g^(−1).Differential scanning calorimetry(DSC)tests verify that the thermodynamic stability of the prepared LiMnPO_(4)/C(LMP)and commercial LiFePO_(4)(LFP)materials is better than that of commercial nickel-cobalt-aluminum(NCA)ternary materials.These prepared LiMnPO_(4)/C composites have high electrochemical capacity and cycle stability.展开更多
A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport...A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.展开更多
A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting ...A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting the ultraviolet-visible spectroscopy technology and H+ concentration detector. Moreover, the amount of Na OH that effectively coordinates Pt4+ has been tentatively qualified and the heating parameters during the preparation process of Pt/C have also been optimized. As investigated, the optimized 20-(1/22)-140-2 Pt/C(20 wt%Pt;m(Pt):m(Na OH)=1/22;heating temperature: 140 °C, heating time: 2 h) exhibits higher electrocatalytic activity towards oxygen reduction reaction(ORR) than the commercial 20 wt% Pt/C(E-TEK) in acidic media. This work provides a theoretical reserve and technical accumulation for industrialized mass production of highly efficient Pt/C catalysts for ORR in proton exchange membrane fuel cells.展开更多
In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morpholo...In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morphology and structure of N,S⁃CDs were characterized by transmission electron microscope,X⁃ray diffrac⁃tion,Fourier transform infrared spectroscopy,and X⁃ray photoelectron spectroscopy,and the basic photophysical properties were investigated via UV⁃Vis absorption spectra and fluorescence spectra.Meanwhile,the N,S⁃CDs have excellent luminescence stability with pH,ionic strength,radiation time,and storage time.Experimental results illus⁃trated the present sensor platform exhibited high sensitivity and selectivity in response to baicalein with a detection limit of 85 nmol·L-1.The quenching mechanism is proved to be the inner filter effect.In addition,this sensor can also detect baicalein in biofluids(serum and urine)with good accuracy and reproducibility.展开更多
Highly monodisperse carbon quantum dots(CQDs)were synthesized by a solvothermal method using L-ascorbic acid as carbon source and different simple alcohols(methanol,ethanol,ethylene glycol,and isopropanol)as reaction ...Highly monodisperse carbon quantum dots(CQDs)were synthesized by a solvothermal method using L-ascorbic acid as carbon source and different simple alcohols(methanol,ethanol,ethylene glycol,and isopropanol)as reaction solvents at 180℃for 4 hours.The performance of CQDs was characterized by transmission electron microscope(TEM),Fourier infrared spectrometer(FTIR),UV-visible spectrophotometer,and fluorescence spectrophotometer.The results show that the prepared CQDs are wavelength-dependent,and have good hydrophilicity and similar surface compositions.However,there are more carbon and oxygen-containing functional groups on the surface of CQDs prepared with ethanol(CQDs-ET),and the type and number of functional groups will directly affect the fluorescence emission of CQDs.Also,it is found that the luminescence mechanisms of CQDs prepared by this solvothermal method are mainly based on the defect state of the oxygen group surface.And alcohol solvents do not directly participate in the formation of carbon nuclei during the reaction process,but it will affect the number and type of surface groups.Therefore,the influence of surface groups on the CQDs performance is greater than that of carbon nuclei in this experiment.展开更多
A simple solvothermal approach was developed to synthesize uniform spherical monodisperse Ni nanoparticles, which can easily disperse in nonpolar solvents to form homogenous colloidal solution. The as-prepared sample ...A simple solvothermal approach was developed to synthesize uniform spherical monodisperse Ni nanoparticles, which can easily disperse in nonpolar solvents to form homogenous colloidal solution. The as-prepared sample was characterized by XRD, TEM, and FTIR. The results indicate that Ni nanoparticles have the structure of face-centered cube and a narrow distribution with a diameter of (3.5±0.5) nm. The FTIR spectrum reveals that the nanoparticles are coated with oleic acid. In the synthetic process, N2H4·H2O was used as a reducing agent and oleic acid as a surfactant. The probable formation mechanism of the spherical nanoparticles was also discussed.展开更多
Porous α-Fe2O3 nanobelts have been prepared via a solvothermal route and subsequent calcination. The as-prepared nanostructure was characterized by XRD, FESEM, TEM, N2 adsorption-desorption isotherms, etc. The α-Fe2...Porous α-Fe2O3 nanobelts have been prepared via a solvothermal route and subsequent calcination. The as-prepared nanostructure was characterized by XRD, FESEM, TEM, N2 adsorption-desorption isotherms, etc. The α-Fe2O3 nanobelts presented obvious porous structures with the length of ca. 1~2μm, width of ca. 200~350 nm and thickness of ca. 30~60 nm. It was found that the assistance of inorganic additives played an important role in the shape control of α-Fe2O3 nanostructure. The gas-sensing performance of the fabricated sensor based on α-Fe2O3 nanobelts sample was also investigated, and the response towards 1000 ppm acetone can reach 24.4. In addition, the gas-sensing conductive mechanism of the sensor was also proposed.展开更多
AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher ...AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher photocatalytic activity than pure AgCl and Ti_(3)C_(2)@TiO_(2)for photooxidation of a 1,4-dihydropyridine derivative(1,4-DHP)and tetracycline hydrochloride(TCH)under visible light irradiation(λ>400 nm).The photocatalytic activity of AgCl/Ti_(3)C_(2)@TiO_(2)composites depended on Ti_(3)C_(2)@TiO_(2)content,and the catalytic activity of the optimized samples were 6.9 times higher than that of pure AgCl for 1,4-DHP photodehydrogenation and 7.3 times higher than that of Ti_(3)C_(2)@TiO_(2)for TCH photooxidation.The increased photocatalytic activity was due to the formation of a heterojunction structure between AgCl and TiO_(2)and the introduction of Ti3C2 as a cocatalyst,which lowered the internal resistance,sped up the charge transfer,and increased the separation efficiency of photogenerated carries.Photogenerated holes and superoxide radical anions were the major active species in the photocatalytic process.展开更多
Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface ...Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface area.However,like graphene,Ti_(3)C_(2)T_(x) restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces,leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material.Here,a transition metal selenide MoSe_(2) with a special three-stacked atomic layered structure,derived from metal-organic framework(MOF),is introduced into the Ti_(3)C_(2)T_(x) structure through a solvo-thermal method.The synergic effects of rapid Li+diffusion and pillaring effect from the MoSe_(2) and excellent conductivity from the Ti_(3)C_(2)T_(x) sheets endow the material with excellent electrochemical reaction kinetics and capacity.The composite Ti_(3)C_(2)T_(x)@MoSe_(2) material exhibits a high capacity over 300 mAh·g^(-1) at 150 mA·g^(-1) and excellent rate property with a specific capacity of 150 mAh·g^(-1) at 1500 mA·g^(-1).Addition-ally,the material shows a superior capacitive contribution of 86.0%at 2.0 mV·s^(-1) due to the fast electrochemical reactions.A Ti_(3)C_(2)T_(x)@MoSe_(2)//AC LIC device is also fabricated and exhibits stable cycle performance.展开更多
TiO2/WS2/g-C3N4composite photocatalysts were synthesized by a liquid-exfoliation-solvothermal method.In this process,the WS2/g-C3N4nano-sheets were prepared by liquid-exfoliation method from the bulk WS2and C3N4in the...TiO2/WS2/g-C3N4composite photocatalysts were synthesized by a liquid-exfoliation-solvothermal method.In this process,the WS2/g-C3N4nano-sheets were prepared by liquid-exfoliation method from the bulk WS2and C3N4in the alcohol system,and then the TiO2nanoparticles(NPs)grew on the WS2/g-C3N4nano-sheets by in-situ synthesized technique.The photocatalytic activity of the as-prepared samples was evaluated by photocatalytic degradation of methyl orange(MO).The results showed that the as-prepared samples exhibited higher photocatalytic activities as compared to the pure TiO2,g-C3N4and TiO2/g-C3N4composite.The enhanced photocatalytic activities of TiO2/WS2/g-C3N4photocatalysts could be attributed to the synergistic effect of heterostructure between TiO2NPs and WS2/g-C3N4nano-sheets,which could efficiently improve the separation of photogenerated electron/hole pairs and utilization efficiency of photons.The quenching tests of radicals indicated that?O2?had crucial effect on degradation of MO,which demonstrated that?O2?was the main active radical in photocatalytic reaction process.展开更多
Up to now, there are rare reports of CoF2 spheres used as high capacity cathode materials. Herein, porous CoF2 spheres were synthesized and studied as cathode materials for LIBs. The porous CoF2 spheres were synthesiz...Up to now, there are rare reports of CoF2 spheres used as high capacity cathode materials. Herein, porous CoF2 spheres were synthesized and studied as cathode materials for LIBs. The porous CoF2 spheres were synthesized by a facile one-pot solvothermal method using a safe and inexpensive ammonium fluoride as the fluorine sources. The nature of the synthesis can avoid using corrosive fluorine sources and additional high-temperature thermal treatment The structure, morphologies and electrochemical performance of the samples obtained at different reaction times and solvothermal temperatures were investigated. The results show that the CoF2 spheres obtained at 200 ℃ for 20 h show better electrochemical performances, including a high initial discharge capacity, good capacity retention and high Coulombic efficiency. It can deliver a high initial discharge capacity of 537.8 mAoh·g-1 and keep 127.4 mA·h.g- 1 after 30 cycles used as cathode materials for lithium-ion batteries. The good electrochemical performances may be attributed to good crystallinity, porous structure and relatively intermediate sphere size.展开更多
基金Funded by the National Natural Science Foundation of China(No.52072180)the Graduate Research and Innovation Projects of Jiangsu Province(No.KYCX21_3461)。
文摘We used the surface-pretreated graphite paper(Gp)as a carrier and loaded BiOCl with high selectivity to Cl^(-)on its surface by solvothermal method to form BiOCl@Gp electrode.The morphology,structure,and composition of the materials were characterized by scanning electron microscopy and nitrogen adsorption/desorption,and the results showed that the spherical BiOCl particles were uniformly dispersed on the surface of the Gp,forming a mesoporous BiOCl@Gp composite with a specific surface area of 22.82 m^(2)/g and a pore volume of 0.043 cm3/g.Furthermore,cyclic voltammetry and electrochemical impedance spectroscopy were used to test the electrochemical properties of the composites,and the stability of BiOCl and the high conductivity of Gp were synergistic,the BiOCl@Gp exhibited a specific capacitance of 30.2 F·g^(-1) at a current density of 0.5 A·g^(-1),and the selectivity of the BiOCl@Gp materials for Cl^(-)was significantly higher than that of SO_(4)^(2-),NO_(2)^(-),and HCO_(3)^(-).Therefore,BiOCl@Gp composite electrode materials can be used for the selective adsorption of Cl^(-)in wastewater,in order to achieve efficient wastewater recycling.
基金support by Beijing Natural Science Foundation(2062013)Tsinghua Basic Research Foundation(JCpy2005055).
文摘Copper nanowires were facilely prepared via a solvothermal method.In this method,cetyitrimethylammonium bromide (CTAB) was used as a soft template,copper nitrate was an inorganic precursor,and absolute ethanol served as a reducing agent as well as a solvent.X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the as-prepared copper nanowires.The as-prepared copper nanowires are fairly uniform and long.The majority of them are longer than 100μm and some even longer than 200μm.Furthermore,most nanowires are quite straight.In addition, The mechanism of the growth process of copper nanowires was discussed.
基金National Natural Science Foundation of China (50502028, 50336040)The Outstanding Youth Foundation of North-western Polytechnical University
文摘With diethylamine as a solvent, ZnSe films were formed on the Si substrate directly from zinc and selenium through the modified solvothermal method. The effects of holding temperature, deposition time and substrate surface treatment on the quality and morphologies of the ZnSe films were investigated. The growth mechanism of ZnSe films was proved to be a layer-nucleation growth process, which was tied in with the Stranski-Krastanov (SK) model. ZnSe films were identified by the X-ray diffraction pattern (XRD), the scanning electron microscope (SEM), the X-ray photoelectron spectroscope (XPS) and the photoluminescence (PL) techniques. The results indicate that the modified solvothermal method with diethylamine as a solvent is suitable to prepare high quality ZnSe films.
基金Project supported by the Natural Science Foundation of Henan Province,China(Grant No.202300410304)Key Research Project for Science and Technology of the Education Department of Henan Province,China(Grant No.21A140021)。
文摘Nanowires have recently attracted more attention because of their low-dimensional structure, tunable optical and electrical properties for next-generation nanoscale optoelectronic devices. Cd S nanowire array, which is(002)-orientation growth and approximately perpendicular to Cd foil substrate, has been fabricated by the solvothermal method. In the temperature-dependent photoluminescence, from short wavelength to long wavelength, four peaks can be ascribed to the emissions from the bandgap, the transition from the holes being bound to the donors or the electrons being bound to the acceptors, the transition from Cd interstitials to Cd vacancies, and the transition from S vacancies to the valence band,respectively. In the photoluminescence of 10 K, the emission originated from the bandgap appears in the form of multiple peaks. Two stronger peaks and five weaker peaks can be observed. The energy differences of the adjacent peaks are close to 38 me V, which is ascribed to the LO phonon energy of Cd S. For the multiple peaks of bandgap emission, from low energy to high energy, the first, second, and third peaks are contributed to the third-order, second-order, and first-order phonon replica of the free exciton A, respectively;the fourth peak is originated from the free exciton A;the fifth peak is contributed to the first-order phonon replica of the excitons bound to neutral donors;the sixth and seventh peaks are originated from the excitons bound to neutral donors and the light polarization parallel to the c axis of hexagonal Cd S, respectively.
基金Fund by the Shanghai Municipal Natural Science Foundation(21ZR1473200)the National Natural Science Foundation of China(No.52072391 and 21905293)。
文摘Poly(nickel 1,1,2,2-ethenetetrathiolate)(poly[Na_(x)(Ni-ett)])is one of the most promising n-type organic thermoelectric materials which can be used in wearable devices.However,the conventional solution method is time-consuming and the prepared poly[Na_(x)(Ni-ett)]usually has poor crystallinity,which does not benefit for achieving high thermoelectric performance.Here,a new one-step solvothermal method under the high reaction temperature and high vapor pressure was developed to prepare poly[Na_(x)(Ni-ett)]with a quite short period.The experimental results show crystallinity and electrical conductivity are greatly enhanced as compared with those prepared by conventional solution method.As a result,a maximum ZT value of 0.04 was achieved at 440 K,which is about four times of the polymer prepared by the conventional solution method.This study may provide a new route to enhance the TE properties of n-type organic thermoelectric materials.
基金supported by the Research Foundation of Key Young Teacher of Anyang Normal University
文摘Sea-urchin-like ZnO nanomaterials were successfully synthesized by decomposition of zinc acetate precursor in the presence of sodium hydroxide and ethylene glycol(EG) in an ethanol solution using a solvothermal method at 180 ℃ for 12 h.The crystalline phase and morphology of the resultant nanomaterials were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),selected-area electronic diffraction(SAED) and high-resolution electron microscopy(HRTEM).Interestingly, the sizes and prod length of the samples can be easily tuned by changing the amount of directing agent EG and keeping other reaction conditions unchangeable. On the basis of our experimental outcomes, EG-controlled-nucleation-growth formation mechanism was proposed to correspond for the sea-urchin-like ZnO growth processes. And the photoluminescence (PL) spectra of the as-selected samples were measured at room temperature, 480 nm. presenting two emission peaks centered at - 388 and
基金Funded by the 973 Project (No. 2009CB939704)the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0547)
文摘Copper indium disulfide(CuInS2) nano-particles were synthesized by solvothermal method at 150 ℃ using copper(?) chloride,indium(Ш) chloride,thiourea and ethanol as raw materials,and characterized by X-ray diffraction(XRD),field-emission scanning electron microscope(FESEM),and UV-Vis spectra.The effects of pH value on its micro-structures and optical properties were investigated.The results show that,with the pH value increasing,the particle size of the nano-crystalline CuInS2 increases,and its band gap becomes narrower under alkaline condition.The band gaps of CuInS2 nano-particles are from 1.52 eV to 1.93 eV,which makes them promising candidates as absorber materials for photovoltaic applications.
基金Project supported by the National Natural Science Foundation of China (21273150)。
文摘In this paper,the CuO-CeO_(2) catalyst was prepared by a direct solvothermal method.The effects of different copper salt precursors(copper nitrate,copper acetate,copper sulfate) on the catalytic performa nce of the prepared catalyst fo r CO oxidation were investigated.The physical and chemical properties of the prepared catalysts were characterized by X-ray diffraction(XRD),Raman spectroscopy,N_(2)physical adsorption,inductively coupled plasma-atomic emission spectrometry(ICP-AES),X-ray photoelectron spectroscopy(XPS),temperature-programmed desorption analysis of CO(CO-TPD),in-situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTs),and temperature-programmed reduction with H_(2)(H_(2)-TPR).The results show that the CuO-CeO_(2)catalyst prepared with copper acetate as precursor(CC-A) exhibits the best catalytic activity for CO oxidation at low temperatures,with T50and T90values of 62 and 78℃ respectively,which is mainly attributed to its large specific surface area,pore volume,CO adsorption capacity,and large amount and strong reactivity of surface oxygen.However,the CuO-CeO_(2) catalyst prepared with copper nitrate as precursor(CC-N) displays better stability and resistance to water or CO_(2) poisoning than CC-A.
基金financially supported by Thailand's Office of the Higher Education Commission through the National Research University Project for Chiang Mai University
文摘In this research, cerium (III) nitrate hexahydrate (Ce(NO3)3·6H2O) and ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) with Ce3+-to-Mo6+ molar ratio of 2:3 were dissolved in 40 ml different solvents of deionized (DI) water, polyethylene glycol (PEG) and ethylene glycol (EG) to form different solutions which were followed by adjusting pH from the traditional values to 7.0 and 10.0 with 1 mol.L-1 sodium hydroxide (NaOH). Subsequently, the solutions were processed by 270-W microwave-hydrother- mal/solvothermal method. Phase, morphology, vibrational modes and photonic properties were fully characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectrophotometry, ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectroscopy. The as-synthe-sized products were pure cerium molybdenum oxide (Ce2(MoO4)3) of nanoparticles clustered together as nano- plates in DI water and PEG solvents, and of spindle-like nanoparticles in EG solvent, including the presence of Ce-O-H mode and MoO4 units. The results show that direct energy gaps of the first two have the same value of 2.30 eV, and that of the last is 2.80 eV, including their blue emission at the same wavelength of 488 nm.
基金financial support from Qingyuan Huayuan Institute of Science and Technology Collaborative Innovation Co.,Ltd.,Qingyuan 511517the National Natural Science Foundation of China(No.21776051)+2 种基金the Scientific and Technological Plan of Guangdong(2019B090905007)the Guangzhou University Research Projects(YG2020017)the China Postdoctoral Science Foundation(2020M682662)。
文摘An environmentally friendly method for the synthesis of LiMnPO_(4)/C anode material for lithium-ion batteries by solvothermal method is introduced.The modification of the morphology of this precursor is altered by changing the ratio of the conditioning solvent(water-ethylene glycol solution)and the order of material addition.Ethylene glycol(EG)exerts a considerable influence on synthesizing LiMnPO_(4)/C flake-like nanocrystal,which benefits the extraction/insertion reaction of lithium ions and improves the electrochemical activity and electrochemical performance of LiMnPO_(4)/C material.When the solvent composition is H_(2)O:EG=1:3,exhibiting exceptional charge/discharge performance and rate capability,the specific discharge capacities are 155.8,153.7,148.8,141.4,129.5,and 112.6 mAh g^(−1) at the 0.1,0.2,0.5,1,2,and 5 C rates,respectively.When the charge-discharge rate returns to 0.1 C,the LiMnPO_(4)/C material shows a reversible discharge specific capacity of 153.7 mAh g^(−1).Differential scanning calorimetry(DSC)tests verify that the thermodynamic stability of the prepared LiMnPO_(4)/C(LMP)and commercial LiFePO_(4)(LFP)materials is better than that of commercial nickel-cobalt-aluminum(NCA)ternary materials.These prepared LiMnPO_(4)/C composites have high electrochemical capacity and cycle stability.
基金funded by the National Natural Science Foundation of China(No.21776051)the Natural Science Foundations of Guangdong(No.2018A030313423)。
文摘A appropriate size with three-dimension(3 D) channels for lithium diffusion plays an important role in constructing highperforming LiNi_(0.5)Mn_(1.5)O_4(LNMO) cathode materials, as it can not only reduce the transport path of lithium ions and electrons, but also reduce the side effects and withstand the structural strain in the process of repetitive Li~+ intercalation/deintercalation. In this work, an e fficient method for designing the hollow LNMO microsphere with 3 D channels structure by using polyethylene oxide(PEO) as soft template agent assisted solvothermal method is proposed. Experimental results indicate that PEO can make the reagents mingle evenly and nucleate slowly in the solvothermal process, thus obtaining a homogeneous distribution of carbonate precursors. In the final LNMO products, the hollow 3 D channels structure obtained by the decomposition of PEO and carbonate precursor in the calcination can provide abundant electroactive zones and electron/ion transport paths during the charge/discharge process, which benefits to improve the cycling performance and rate capability. The LNMO prepared by adding 1 g PEO possesses the most outstanding electrochemical performance, which presented an excellent discharge capacity of 143.1 mAh g~(-1) at 0.1 C and with a capacity retention of 92.2% after 100 cycles at 1 C. The superior performance attributed to the 3 D channels structure of hollow microspheres, which provide uninterrupted conductive systems and therefore achieve the stable transfer for electron/ion.
文摘A solvothermal assisted ethylene glycol reduction method is a common technology for Pt/C catalysts preparation. Here, the coordination mechanism of the Pt-containing species is deeply studied by innovatively adopting the ultraviolet-visible spectroscopy technology and H+ concentration detector. Moreover, the amount of Na OH that effectively coordinates Pt4+ has been tentatively qualified and the heating parameters during the preparation process of Pt/C have also been optimized. As investigated, the optimized 20-(1/22)-140-2 Pt/C(20 wt%Pt;m(Pt):m(Na OH)=1/22;heating temperature: 140 °C, heating time: 2 h) exhibits higher electrocatalytic activity towards oxygen reduction reaction(ORR) than the commercial 20 wt% Pt/C(E-TEK) in acidic media. This work provides a theoretical reserve and technical accumulation for industrialized mass production of highly efficient Pt/C catalysts for ORR in proton exchange membrane fuel cells.
文摘In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morphology and structure of N,S⁃CDs were characterized by transmission electron microscope,X⁃ray diffrac⁃tion,Fourier transform infrared spectroscopy,and X⁃ray photoelectron spectroscopy,and the basic photophysical properties were investigated via UV⁃Vis absorption spectra and fluorescence spectra.Meanwhile,the N,S⁃CDs have excellent luminescence stability with pH,ionic strength,radiation time,and storage time.Experimental results illus⁃trated the present sensor platform exhibited high sensitivity and selectivity in response to baicalein with a detection limit of 85 nmol·L-1.The quenching mechanism is proved to be the inner filter effect.In addition,this sensor can also detect baicalein in biofluids(serum and urine)with good accuracy and reproducibility.
基金Funded by Shanghai Publishing and Printing College(No.ZBKT202004)
文摘Highly monodisperse carbon quantum dots(CQDs)were synthesized by a solvothermal method using L-ascorbic acid as carbon source and different simple alcohols(methanol,ethanol,ethylene glycol,and isopropanol)as reaction solvents at 180℃for 4 hours.The performance of CQDs was characterized by transmission electron microscope(TEM),Fourier infrared spectrometer(FTIR),UV-visible spectrophotometer,and fluorescence spectrophotometer.The results show that the prepared CQDs are wavelength-dependent,and have good hydrophilicity and similar surface compositions.However,there are more carbon and oxygen-containing functional groups on the surface of CQDs prepared with ethanol(CQDs-ET),and the type and number of functional groups will directly affect the fluorescence emission of CQDs.Also,it is found that the luminescence mechanisms of CQDs prepared by this solvothermal method are mainly based on the defect state of the oxygen group surface.And alcohol solvents do not directly participate in the formation of carbon nuclei during the reaction process,but it will affect the number and type of surface groups.Therefore,the influence of surface groups on the CQDs performance is greater than that of carbon nuclei in this experiment.
基金the Research Fund of Shaanxi Key Laboratory(Nos.04JS04 and 05JS50)the Natural Science Foundation of Shaanxi Province, China(No.2005B19)the Significant Special Found of "13115" S & T Innovation Project of Shaanxi Province, China(No.2007ZDKG-61)
文摘A simple solvothermal approach was developed to synthesize uniform spherical monodisperse Ni nanoparticles, which can easily disperse in nonpolar solvents to form homogenous colloidal solution. The as-prepared sample was characterized by XRD, TEM, and FTIR. The results indicate that Ni nanoparticles have the structure of face-centered cube and a narrow distribution with a diameter of (3.5±0.5) nm. The FTIR spectrum reveals that the nanoparticles are coated with oleic acid. In the synthetic process, N2H4·H2O was used as a reducing agent and oleic acid as a surfactant. The probable formation mechanism of the spherical nanoparticles was also discussed.
基金supported by the Natural Science Foundation of Fujian Province(No.2017J05021)the National Natural Science Foundation of China(No.21201035)Fuzhou university undergraduate research training program in chemistry(HX2018-14)
文摘Porous α-Fe2O3 nanobelts have been prepared via a solvothermal route and subsequent calcination. The as-prepared nanostructure was characterized by XRD, FESEM, TEM, N2 adsorption-desorption isotherms, etc. The α-Fe2O3 nanobelts presented obvious porous structures with the length of ca. 1~2μm, width of ca. 200~350 nm and thickness of ca. 30~60 nm. It was found that the assistance of inorganic additives played an important role in the shape control of α-Fe2O3 nanostructure. The gas-sensing performance of the fabricated sensor based on α-Fe2O3 nanobelts sample was also investigated, and the response towards 1000 ppm acetone can reach 24.4. In addition, the gas-sensing conductive mechanism of the sensor was also proposed.
基金This work was supported by the Opening Project of the Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education(LZJ2002)the Open Project of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province(CSPC2016-3-2).
文摘AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher photocatalytic activity than pure AgCl and Ti_(3)C_(2)@TiO_(2)for photooxidation of a 1,4-dihydropyridine derivative(1,4-DHP)and tetracycline hydrochloride(TCH)under visible light irradiation(λ>400 nm).The photocatalytic activity of AgCl/Ti_(3)C_(2)@TiO_(2)composites depended on Ti_(3)C_(2)@TiO_(2)content,and the catalytic activity of the optimized samples were 6.9 times higher than that of pure AgCl for 1,4-DHP photodehydrogenation and 7.3 times higher than that of Ti_(3)C_(2)@TiO_(2)for TCH photooxidation.The increased photocatalytic activity was due to the formation of a heterojunction structure between AgCl and TiO_(2)and the introduction of Ti3C2 as a cocatalyst,which lowered the internal resistance,sped up the charge transfer,and increased the separation efficiency of photogenerated carries.Photogenerated holes and superoxide radical anions were the major active species in the photocatalytic process.
基金supported by the National Natural Science Foundation of China(No.51972023)。
文摘Two-dimensional Ti_(3)C_(2)T_(x) exhibits outstanding rate property and cycle performance in lithium-ion capacitors(LICs)due to its unique layered structure,excellent electronic conductivity,and high specific surface area.However,like graphene,Ti_(3)C_(2)T_(x) restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces,leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material.Here,a transition metal selenide MoSe_(2) with a special three-stacked atomic layered structure,derived from metal-organic framework(MOF),is introduced into the Ti_(3)C_(2)T_(x) structure through a solvo-thermal method.The synergic effects of rapid Li+diffusion and pillaring effect from the MoSe_(2) and excellent conductivity from the Ti_(3)C_(2)T_(x) sheets endow the material with excellent electrochemical reaction kinetics and capacity.The composite Ti_(3)C_(2)T_(x)@MoSe_(2) material exhibits a high capacity over 300 mAh·g^(-1) at 150 mA·g^(-1) and excellent rate property with a specific capacity of 150 mAh·g^(-1) at 1500 mA·g^(-1).Addition-ally,the material shows a superior capacitive contribution of 86.0%at 2.0 mV·s^(-1) due to the fast electrochemical reactions.A Ti_(3)C_(2)T_(x)@MoSe_(2)//AC LIC device is also fabricated and exhibits stable cycle performance.
基金Projects(21376099,21546002)supported by the National Natural Science Foundation of China
文摘TiO2/WS2/g-C3N4composite photocatalysts were synthesized by a liquid-exfoliation-solvothermal method.In this process,the WS2/g-C3N4nano-sheets were prepared by liquid-exfoliation method from the bulk WS2and C3N4in the alcohol system,and then the TiO2nanoparticles(NPs)grew on the WS2/g-C3N4nano-sheets by in-situ synthesized technique.The photocatalytic activity of the as-prepared samples was evaluated by photocatalytic degradation of methyl orange(MO).The results showed that the as-prepared samples exhibited higher photocatalytic activities as compared to the pure TiO2,g-C3N4and TiO2/g-C3N4composite.The enhanced photocatalytic activities of TiO2/WS2/g-C3N4photocatalysts could be attributed to the synergistic effect of heterostructure between TiO2NPs and WS2/g-C3N4nano-sheets,which could efficiently improve the separation of photogenerated electron/hole pairs and utilization efficiency of photons.The quenching tests of radicals indicated that?O2?had crucial effect on degradation of MO,which demonstrated that?O2?was the main active radical in photocatalytic reaction process.
基金This work was supported by the Applied Fundamental Foundation of Sichuan Province (No. 2014JY0202), the R&D Foundation of China Academy of Engineering Physics (No. 2014B0302036), the Science Foundation for Distinguished Young Scholars of Sichuan Province (No. 2016JQ0025) and National Natural Science Foundation of China (Nos. 21401177 and 21501160), the "1000plan" from the Chinese Government, and the Collaborative Innovation Foundation of Sichuan University (No. XTCS2014009).
文摘Up to now, there are rare reports of CoF2 spheres used as high capacity cathode materials. Herein, porous CoF2 spheres were synthesized and studied as cathode materials for LIBs. The porous CoF2 spheres were synthesized by a facile one-pot solvothermal method using a safe and inexpensive ammonium fluoride as the fluorine sources. The nature of the synthesis can avoid using corrosive fluorine sources and additional high-temperature thermal treatment The structure, morphologies and electrochemical performance of the samples obtained at different reaction times and solvothermal temperatures were investigated. The results show that the CoF2 spheres obtained at 200 ℃ for 20 h show better electrochemical performances, including a high initial discharge capacity, good capacity retention and high Coulombic efficiency. It can deliver a high initial discharge capacity of 537.8 mAoh·g-1 and keep 127.4 mA·h.g- 1 after 30 cycles used as cathode materials for lithium-ion batteries. The good electrochemical performances may be attributed to good crystallinity, porous structure and relatively intermediate sphere size.