Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify th...Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify the load, especially in modeling nonpoint source.In this study a revised model was established by integrating point and nonpoint sources into one-dimensional Streeter-Phelps(S-P) model on the basis of real-time hydrologic data and surface water quality monitoring data in the Jilin Reach of the Songhua River Basin.Chemical oxygen demand(COD) and ammonia nitrogen(NH 3-N) loads were estimated.Results showed that COD loads of point source and nonpoint source were 134 958 t/yr and 86 209 t/yr, accounting for 61.02% and 38.98% of total loads, respectively.NH 3-N loads of point source and nonpoint source were 16 739 t/yr and 14 272 t/yr, accounting for 53.98% and 46.02%, respectively.Point source pollution was stronger than nonpoint source pollution in the study area at present.The water quality of upstream was better than that of downstream of the rivers and cities.It is indispensable to treat industrial wastewater and municipal sewage out of point sources, to adopt the best management practices to control diffuse pollutants from agricultural land and urban surface runoff in improving water quality of the Songhua River Basin.The revised S-P model can be successfully used to identify pollution source and quantify point source and nonpoint source loads by calibrating and validating.展开更多
There is an increasing concern for potentially hazardous metals pollution, which can threaten crops production and human health. In this study, the spatial distribution and environmental risks of eight heavy metals in...There is an increasing concern for potentially hazardous metals pollution, which can threaten crops production and human health. In this study, the spatial distribution and environmental risks of eight heavy metals in surface soil samples collected from the paddy fields in Yongshuyu irrigation area, Northeast China were investigated. The mean concentrations of Pb, Cr, Cu, Ni, Zn, Cd, Hg and As were 34.6 ± 4.67, 82.8 ± 9.51, 17.3 ± 4.09, 21.2 ± 12.0, 88.6 ± 17.9, 0.18 ± 0.15, 0.22 ± 0.07 and 8.77 ± 2.47 mg/kg, respectively, which were slightly higher than their corresponding background values of Jilin Province, indicating enrichment of these metals in the paddy soils, especially for Ni, Cd and Hg. The spatial distribution of heavy metals was closely correlated with local anthropogenic activities, such as agricultural production, mining and transportation. The hot-spot areas of As and Cd were mainly concentrated in the up-midstream where were associated with agricultural activities. Cr and Cu showed similar spatial distributions with hot-spot areas distributed the whole irrigation area uniformly. Ni was mainly distributed in the downstream where Ni quarries concentrated, while the spatial distribution patterns of Hg was mainly located in the upstream and downstream where the soil was significantly influenced by irrigation and coal mining emission. The spatial distributions of Pb and Zn were mainly concentrated along the highway side. The pollution levels of Yongshuyu irrigation area were estimated through index of geo-accumulation(Igeo), Nemerow integrated pollution index(NIPI) and potential ecological risk index(PERI). The results showed that Cd and Hg were the main pollutants in the study area. Health risk assessment results indicated that children were in higher non-carcinogenic and carcinogenic risks than adults with the carcinogenic metal of As. Ingestion was the main exposure pathway to non-carcinogenic and carcinogenic risk for both adults and children. Principal component analysis(PCA) indicated that Cr and Cu were mainly from parent materials, while Cd and As were mainly affected by agricultural activities. Pb and Zn were controlled by traffic activities, and the accumulations of Ni and Hg were associated with mining activities. This study would be valuable for preventing heavy metals inputs and safety in rice production of the Songhua river basin.展开更多
In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results ...In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results were drawn: (1) Altitude effect is the primary factor leading to increased rainstorms in the southern source; (2) Slope effect primarily leads to differences of the weather systems in the two sources, and thus cause the difference of the rainstorms; (3) Slope effect is responsible for the greater fluctuation in the observed floods in the southern source. These landform differences eventually lead to the differences in the characteristics of floods in the southern and northern sources. Commensurability method was used to identify the period of rainstorms in the southern and northern sources. The results showed that although rainstorms do not appear at the same time in the two sources they are characteristic of a 10 years' period in both areas. These results can serve as hydrological references for flood control and long-term flood disaster predictions.展开更多
The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricte...The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.展开更多
Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality dat...Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality data sets of the Second Songhua River(SSHR) basin in China,obtained during two years(2012-2013) of monitoring of 10 physicochemical parameters at 15 different sites.The results showed that most of physicochemical parameters varied significantly among the sampling sites.Three significant groups,highly polluted(HP),moderately polluted(MP) and less polluted(LP),of sampling sites were obtained through Hierarchical agglomerative CA on the basis of similarity of water quality characteristics.DA identified p H,F,DO,NH3-N,COD and VPhs were the most important parameters contributing to spatial variations of surface water quality.However,DA did not give a considerable data reduction(40% reduction).PCA/FA resulted in three,three and four latent factors explaining 70%,62% and 71% of the total variance in water quality data sets of HP,MP and LP regions,respectively.FA revealed that the SSHR water chemistry was strongly affected by anthropogenic activities(point sources:industrial effluents and wastewater treatment plants;non-point sources:domestic sewage,livestock operations and agricultural activities) and natural processes(seasonal effect,and natural inputs).PCA/FA in the whole basin showed the best results for data reduction because it used only two parameters(about 80% reduction) as the most important parameters to explain 72% of the data variation.Thus,this work illustrated the utility of multivariate statistical techniques for analysis and interpretation of datasets and,in water quality assessment,identification of pollution sources/factors and understanding spatial variations in water quality for effective stream water quality management.展开更多
Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravit...Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends.展开更多
Multivariate statistical techniques, including cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA), were used to evaluate temporal and spatial variations and ...Multivariate statistical techniques, including cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA), were used to evaluate temporal and spatial variations and to interpret a large and complex water quality data sets collected from the Songhua River Basin. The data sets, which contained 14 parameters, were generated during the 7-year (1998-2004) monitoring program at 14 different sites along the rivers. Three significant sampling locations (less polluted sites, moderately polluted sites and highly polluted sites) were detected by CA method, and five latent factors (organic, inor-ganic, petrochemical, physiochemical, and heavy metals) were identified by PCA and FA methods. The re-sults of DA showed only five parameters (temperature, pH, dissolved oxygen, ammonia nitrogen, and nitrate nitrogen) and eight parameters (temperature, pH, dissolved oxygen, biochemical oxygen demand, ammonia nitrogen, nitrate nitrogen, volatile phenols and total arsenic) were necessarily in temporal and spatial varia-tions analysis, respectively. Furthermore, this study revealed the major causes of water quality deterioration were related to inflow of effluent from domestic and industrial wastewater disposal.展开更多
The Songhua River Basin is a burgeoning agricultural area in the modern times in China. Particularly in recent years, increasing chemical fertilizers and pesticides have been applied with the development of agricultur...The Songhua River Basin is a burgeoning agricultural area in the modern times in China. Particularly in recent years, increasing chemical fertilizers and pesticides have been applied with the development of agricultural production. However, the situation of non- point source pollution (NSP) from agricultural production in this basin is still obscure. In order to solve the problem, the occurrence and distribution of acetochlor in sediments and riparian soils of the Songhua River Basin before rain season and after rain season were investigated. In addition, total organic carbon was analyzed. The result showed that the concentration of acetochlor ranged from 0.47 to 11.76 μg/kg in sediments and 0.03 to 709.37 μg/kg in riparian soils. During the high flow period in 2009, the mean concentration was 4.79 μg/kg in sediments and 0.75 μg]kg in riparian soils, respectively. Similarly, the mean concentration was 2.53 μg/kg in sediments and 61.36μg/kg in riparian soils, during the average flow period in 2010. There was a significant correlation between the concentration of acetochlor and total organic carbon in surface sediments. Moreover, the distribution of acetochlor in sediments of the Songhua River was significantly correlated to land use and topography of the watershed. The investigated data suggested that the concentration of acetochlor in the Songnen Plain and the Sanjiang Plain was higher than that in the other areas of the basin, and riparian buffering zones in these areas bad been destroyed by human activities. The optimal agricultural measures to alleviate the contamination of pesticides should be adopted, including controlling agricultural application of acetochlor and ecological restoration of riparian buffering strips.展开更多
In the summer of 1998, an exceptionally serious flood, with the characteristics of high water level, large volume of flow, long duration and serious losses caused by the disaster, occurred in the Nenjiang River basin ...In the summer of 1998, an exceptionally serious flood, with the characteristics of high water level, large volume of flow, long duration and serious losses caused by the disaster, occurred in the Nenjiang River basin and the Songhua River basin. Greater flood peak occurred three times in the trunk stream of the Nenjiang River for the floods occurred in its tributaries one after another. At Jiangqiao Hydrometric Station, the water level was 141.90 m and the rate of flow was 12?000 m 3/s. The flood is ranged to a catastrophic one, which occurs once in 50 years. Ranged to a catastrophic flood at Qiqihar Hydrometric Station that occurs once in 400 years, its water level, 0.89 m higher than the former all time highest, was 149.30?m and the corresponding rate of flow was 14?800?m 3/s. The water level that exceeded the all time highest lasted for 7 days. At Harbin Hydrometric Station, the water level, 0.59?m higher than the former all time highest, was 120.89?m and the corresponding rate of flow was 17?400?m 3/s. The water level that exceeded the all time highest lasted for 9 to 10 days. The flood here is ranged to a catastrophic one, which occurs once in 150 years. The flood of the Nenjiang River damaged 456×10 4?ha of crops and 115×10 4 rooms and the direct loss of economy exceeded 40 billion yuan(RMB). The main reasons of the flood are great rainfall, long flood season, unreasonable land use, regional ecological environment degradation and lack of water control projects. It is obvious that the following measures are greatly needed: the comprehensive management of the river basins; the formulation of development planning of the river basins, especially the water control projects; the development of agriculture based on ecological security.展开更多
利用松花江流域(Songhua River Basin,SRB)103站降水资料、NCEP/NCAR再分析资料以及NOAA海温等资料,运用多种统计方法,分析了1979-2019年松花江流域冬季降雪的年际变化特征及其与西北太平洋地区海温异常的联系。研究表明,松花江流域冬...利用松花江流域(Songhua River Basin,SRB)103站降水资料、NCEP/NCAR再分析资料以及NOAA海温等资料,运用多种统计方法,分析了1979-2019年松花江流域冬季降雪的年际变化特征及其与西北太平洋地区海温异常的联系。研究表明,松花江流域冬季降雪主要受到其年际变率的调控,且年际降雪异常EOF分解的第一模态表现为流域一致型变化(方差贡献率为55.3%)。当松花江流域冬季年际降雪偏多(偏少)时,鄂霍次克海到阿留申地区出现位势高度正异常(负异常),其南部中低纬地区位势高度为负异常(正异常)。进一步分析表明,冬季西北太平洋地区偶极子型海温异常对同期松花江流域年际降雪有重要影响。当西北太平洋海温偶极子为正位相时(日本海地区海温正异常,菲律宾群岛以东地区海温负异常),引起西北太平洋中高纬地区对流层中层出现位势高度正异常,低层为异常反气旋式环流,中低纬地区对流层中层出现位势高度负异常,低层为异常气旋式环流。在此环流背景下,北太平洋到松花江流域被异常东南风控制,有利于阿留申以南海域以及我国东部近海地区的水汽输送至松花江流域并辐合上升,导致该流域冬季年际降雪增加;反之亦然。展开更多
基金Under the auspices of Major State Basic Research Development Program of China (973 Program) (No. 2004CB418502,No. 2007CB407205)the Knowledge Innovation Programs of Chinese Academy of Sciences (No. KSCX1-YW-09-13)
文摘Individual participation of pollutants in the pollution load should be estimated even if roughly for the appropriate environmental management of a river basin.It is difficult to identify the sources and to quantify the load, especially in modeling nonpoint source.In this study a revised model was established by integrating point and nonpoint sources into one-dimensional Streeter-Phelps(S-P) model on the basis of real-time hydrologic data and surface water quality monitoring data in the Jilin Reach of the Songhua River Basin.Chemical oxygen demand(COD) and ammonia nitrogen(NH 3-N) loads were estimated.Results showed that COD loads of point source and nonpoint source were 134 958 t/yr and 86 209 t/yr, accounting for 61.02% and 38.98% of total loads, respectively.NH 3-N loads of point source and nonpoint source were 16 739 t/yr and 14 272 t/yr, accounting for 53.98% and 46.02%, respectively.Point source pollution was stronger than nonpoint source pollution in the study area at present.The water quality of upstream was better than that of downstream of the rivers and cities.It is indispensable to treat industrial wastewater and municipal sewage out of point sources, to adopt the best management practices to control diffuse pollutants from agricultural land and urban surface runoff in improving water quality of the Songhua River Basin.The revised S-P model can be successfully used to identify pollution source and quantify point source and nonpoint source loads by calibrating and validating.
基金Under the auspices of ‘One-Three-Five’ Strategic Planning Principles of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.IGA-135-08)Research Foundation for Talents of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.Y6H1211001)+1 种基金National Natural Science Foundation(No.41701372)Jilin Provincial Natural Science Fund Subject(No.20180101318JC)
文摘There is an increasing concern for potentially hazardous metals pollution, which can threaten crops production and human health. In this study, the spatial distribution and environmental risks of eight heavy metals in surface soil samples collected from the paddy fields in Yongshuyu irrigation area, Northeast China were investigated. The mean concentrations of Pb, Cr, Cu, Ni, Zn, Cd, Hg and As were 34.6 ± 4.67, 82.8 ± 9.51, 17.3 ± 4.09, 21.2 ± 12.0, 88.6 ± 17.9, 0.18 ± 0.15, 0.22 ± 0.07 and 8.77 ± 2.47 mg/kg, respectively, which were slightly higher than their corresponding background values of Jilin Province, indicating enrichment of these metals in the paddy soils, especially for Ni, Cd and Hg. The spatial distribution of heavy metals was closely correlated with local anthropogenic activities, such as agricultural production, mining and transportation. The hot-spot areas of As and Cd were mainly concentrated in the up-midstream where were associated with agricultural activities. Cr and Cu showed similar spatial distributions with hot-spot areas distributed the whole irrigation area uniformly. Ni was mainly distributed in the downstream where Ni quarries concentrated, while the spatial distribution patterns of Hg was mainly located in the upstream and downstream where the soil was significantly influenced by irrigation and coal mining emission. The spatial distributions of Pb and Zn were mainly concentrated along the highway side. The pollution levels of Yongshuyu irrigation area were estimated through index of geo-accumulation(Igeo), Nemerow integrated pollution index(NIPI) and potential ecological risk index(PERI). The results showed that Cd and Hg were the main pollutants in the study area. Health risk assessment results indicated that children were in higher non-carcinogenic and carcinogenic risks than adults with the carcinogenic metal of As. Ingestion was the main exposure pathway to non-carcinogenic and carcinogenic risk for both adults and children. Principal component analysis(PCA) indicated that Cr and Cu were mainly from parent materials, while Cd and As were mainly affected by agricultural activities. Pb and Zn were controlled by traffic activities, and the accumulations of Ni and Hg were associated with mining activities. This study would be valuable for preventing heavy metals inputs and safety in rice production of the Songhua river basin.
基金supported by the Application Foundation Item of Science and Technology Department of Jilin Province (Grant No. 2011-05013)the National Natural Science Foundation of China (Grant No. 50879028)
文摘In this study, the differences in annual rainstorm changes in the Second Songhua River Basin and the Nenjiang River basin and their causes were compared from the perspective of mountain effects. The following results were drawn: (1) Altitude effect is the primary factor leading to increased rainstorms in the southern source; (2) Slope effect primarily leads to differences of the weather systems in the two sources, and thus cause the difference of the rainstorms; (3) Slope effect is responsible for the greater fluctuation in the observed floods in the southern source. These landform differences eventually lead to the differences in the characteristics of floods in the southern and northern sources. Commensurability method was used to identify the period of rainstorms in the southern and northern sources. The results showed that although rainstorms do not appear at the same time in the two sources they are characteristic of a 10 years' period in both areas. These results can serve as hydrological references for flood control and long-term flood disaster predictions.
基金Under the auspices of National Natural Science Foundation(No.50879028)Open Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Nanjing Hydraulic Research institute(No.2009491311)+1 种基金Open Research Fund Program of State key Laboratory of Hydroscience and Engineering,Tsinghua University(No.sklhse-2010-A-02)Application Foundation Items of Science and Technology Department of Jilin Province(No.2011-05013)
文摘The influence of various factors, mechanisms, and principles affecting runoff are summarized as periodic law, random law, and basin-wide law. Periodic law is restricted by astronomical factors, random law is restricted by atmospheric circulation, and basin-wide law is restricted by underlying surface. The commensurability method was used to identify the almost period law, the wave method was applied to deducing the random law, and the precursor method was applied in order to forecast runoff magnitude for the current year. These three methods can be used to assess each other and to forecast runoff. The system can also be applied to forecasting wet years, normal years and dry years for a particular year as well as forecasting years when floods with similar characteristics of previous floods, can be expected. Based on hydrological climate data of Baishan (1933-2009) and Nierji (1886-2009) in the Songhua River Basin, the forecasting results for 2010 show that it was a wet year in the Baishan Reservoir, similar to the year of 1995; it was a secondary dry year in the Nierji Reservoir, similar to the year of 1980. The actual water inflow into the Baishan Reservoir was 1.178 × 10 10 m 3 in 2010, which was markedly higher than average inflows, ranking as the second highest in history since records began. The actual water inflow at the Nierji station in 2010 was 9.96 × 10 9 m 3 , which was lower than the average over a period of many years. These results indicate a preliminary conclusion that the methods proposed in this paper have been proved to be reasonable and reliable, which will encourage the application of the chief reporter release system for each basin. This system was also used to forecast inflows for 2011, indicating a secondary wet year for the Baishan Reservoir in 2011, similar to that experienced in 1991. A secondary wet year was also forecast for the Nierji station in 2011, similar to that experienced during 1983. According to the nature of influencing factors, mechanisms and forecasting methods and the service objects, mid-to long-term hydrological forecasting can be divided into two classes:mid-to long-term runoff forecasting, and severe floods and droughts forecasting. The former can be applied to quantitative forecasting of runoff, which has important applications for water release schedules. The latter, i.e., qualitative disaster forecasting, is important for flood control and drought relief. Practical methods for forecasting severe droughts and floods are discussed in this paper.
基金Project (2012ZX07501002-001) supported by the Ministry of Science and Technology of China
文摘Multivariate statistical techniques,such as cluster analysis(CA),discriminant analysis(DA),principal component analysis(PCA) and factor analysis(FA),were applied to evaluate and interpret the surface water quality data sets of the Second Songhua River(SSHR) basin in China,obtained during two years(2012-2013) of monitoring of 10 physicochemical parameters at 15 different sites.The results showed that most of physicochemical parameters varied significantly among the sampling sites.Three significant groups,highly polluted(HP),moderately polluted(MP) and less polluted(LP),of sampling sites were obtained through Hierarchical agglomerative CA on the basis of similarity of water quality characteristics.DA identified p H,F,DO,NH3-N,COD and VPhs were the most important parameters contributing to spatial variations of surface water quality.However,DA did not give a considerable data reduction(40% reduction).PCA/FA resulted in three,three and four latent factors explaining 70%,62% and 71% of the total variance in water quality data sets of HP,MP and LP regions,respectively.FA revealed that the SSHR water chemistry was strongly affected by anthropogenic activities(point sources:industrial effluents and wastewater treatment plants;non-point sources:domestic sewage,livestock operations and agricultural activities) and natural processes(seasonal effect,and natural inputs).PCA/FA in the whole basin showed the best results for data reduction because it used only two parameters(about 80% reduction) as the most important parameters to explain 72% of the data variation.Thus,this work illustrated the utility of multivariate statistical techniques for analysis and interpretation of datasets and,in water quality assessment,identification of pollution sources/factors and understanding spatial variations in water quality for effective stream water quality management.
基金National Key Technologies R&D Program(No.2012BAD22B04)Talent Introduction Project of Jilin Province
文摘Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends.
文摘Multivariate statistical techniques, including cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA), were used to evaluate temporal and spatial variations and to interpret a large and complex water quality data sets collected from the Songhua River Basin. The data sets, which contained 14 parameters, were generated during the 7-year (1998-2004) monitoring program at 14 different sites along the rivers. Three significant sampling locations (less polluted sites, moderately polluted sites and highly polluted sites) were detected by CA method, and five latent factors (organic, inor-ganic, petrochemical, physiochemical, and heavy metals) were identified by PCA and FA methods. The re-sults of DA showed only five parameters (temperature, pH, dissolved oxygen, ammonia nitrogen, and nitrate nitrogen) and eight parameters (temperature, pH, dissolved oxygen, biochemical oxygen demand, ammonia nitrogen, nitrate nitrogen, volatile phenols and total arsenic) were necessarily in temporal and spatial varia-tions analysis, respectively. Furthermore, this study revealed the major causes of water quality deterioration were related to inflow of effluent from domestic and industrial wastewater disposal.
基金supported by the National Special Water Project in China (No. 2008ZX07526-002-01)
文摘The Songhua River Basin is a burgeoning agricultural area in the modern times in China. Particularly in recent years, increasing chemical fertilizers and pesticides have been applied with the development of agricultural production. However, the situation of non- point source pollution (NSP) from agricultural production in this basin is still obscure. In order to solve the problem, the occurrence and distribution of acetochlor in sediments and riparian soils of the Songhua River Basin before rain season and after rain season were investigated. In addition, total organic carbon was analyzed. The result showed that the concentration of acetochlor ranged from 0.47 to 11.76 μg/kg in sediments and 0.03 to 709.37 μg/kg in riparian soils. During the high flow period in 2009, the mean concentration was 4.79 μg/kg in sediments and 0.75 μg]kg in riparian soils, respectively. Similarly, the mean concentration was 2.53 μg/kg in sediments and 61.36μg/kg in riparian soils, during the average flow period in 2010. There was a significant correlation between the concentration of acetochlor and total organic carbon in surface sediments. Moreover, the distribution of acetochlor in sediments of the Songhua River was significantly correlated to land use and topography of the watershed. The investigated data suggested that the concentration of acetochlor in the Songnen Plain and the Sanjiang Plain was higher than that in the other areas of the basin, and riparian buffering zones in these areas bad been destroyed by human activities. The optimal agricultural measures to alleviate the contamination of pesticides should be adopted, including controlling agricultural application of acetochlor and ecological restoration of riparian buffering strips.
文摘In the summer of 1998, an exceptionally serious flood, with the characteristics of high water level, large volume of flow, long duration and serious losses caused by the disaster, occurred in the Nenjiang River basin and the Songhua River basin. Greater flood peak occurred three times in the trunk stream of the Nenjiang River for the floods occurred in its tributaries one after another. At Jiangqiao Hydrometric Station, the water level was 141.90 m and the rate of flow was 12?000 m 3/s. The flood is ranged to a catastrophic one, which occurs once in 50 years. Ranged to a catastrophic flood at Qiqihar Hydrometric Station that occurs once in 400 years, its water level, 0.89 m higher than the former all time highest, was 149.30?m and the corresponding rate of flow was 14?800?m 3/s. The water level that exceeded the all time highest lasted for 7 days. At Harbin Hydrometric Station, the water level, 0.59?m higher than the former all time highest, was 120.89?m and the corresponding rate of flow was 17?400?m 3/s. The water level that exceeded the all time highest lasted for 9 to 10 days. The flood here is ranged to a catastrophic one, which occurs once in 150 years. The flood of the Nenjiang River damaged 456×10 4?ha of crops and 115×10 4 rooms and the direct loss of economy exceeded 40 billion yuan(RMB). The main reasons of the flood are great rainfall, long flood season, unreasonable land use, regional ecological environment degradation and lack of water control projects. It is obvious that the following measures are greatly needed: the comprehensive management of the river basins; the formulation of development planning of the river basins, especially the water control projects; the development of agriculture based on ecological security.
文摘利用松花江流域(Songhua River Basin,SRB)103站降水资料、NCEP/NCAR再分析资料以及NOAA海温等资料,运用多种统计方法,分析了1979-2019年松花江流域冬季降雪的年际变化特征及其与西北太平洋地区海温异常的联系。研究表明,松花江流域冬季降雪主要受到其年际变率的调控,且年际降雪异常EOF分解的第一模态表现为流域一致型变化(方差贡献率为55.3%)。当松花江流域冬季年际降雪偏多(偏少)时,鄂霍次克海到阿留申地区出现位势高度正异常(负异常),其南部中低纬地区位势高度为负异常(正异常)。进一步分析表明,冬季西北太平洋地区偶极子型海温异常对同期松花江流域年际降雪有重要影响。当西北太平洋海温偶极子为正位相时(日本海地区海温正异常,菲律宾群岛以东地区海温负异常),引起西北太平洋中高纬地区对流层中层出现位势高度正异常,低层为异常反气旋式环流,中低纬地区对流层中层出现位势高度负异常,低层为异常气旋式环流。在此环流背景下,北太平洋到松花江流域被异常东南风控制,有利于阿留申以南海域以及我国东部近海地区的水汽输送至松花江流域并辐合上升,导致该流域冬季年际降雪增加;反之亦然。