Significant advancements have been made in the study of Mesozoic granite buried hills in the Songnan Low Uplift(SNLU)of the Qiongdongnan Basin.These findings indicate that the bedrock buried hills in this basin hold g...Significant advancements have been made in the study of Mesozoic granite buried hills in the Songnan Low Uplift(SNLU)of the Qiongdongnan Basin.These findings indicate that the bedrock buried hills in this basin hold great potential for exploration.Borehole samples taken from the granite buried hills in the SNLU were analyzed using apatite fission track(AFT)and zircon(U-Th)/He data to unravel the thermal history of the basement rock.This information is crucial for understanding the processes of exhumation and alteration that occurred after its formation.Thermal modeling of a sample from the western bulge of the SNLU revealed a prolonged cooling event from the late Mesozoic to the Oligocene period(~80-23.8 Ma),followed by a heating stage from the Miocene epoch until the present(~23.8 Ma to present).In contrast,the sample from the eastern bulge experienced a more complex thermal history.It underwent two cooling stages during the late Mesozoic to late Eocene period(~80-36.4 Ma)and the late Oligocene period(~30-23.8 Ma),interspersed with two heating phases during the late Eocene to early Oligocene period(~36.4-30 Ma)and the Miocene epoch to recent times(~23.8-0 Ma),respectively.The differences in exhumation histories between the western and eastern bulges during the late Eocene to Oligocene period in the SNLU can likely be attributed to differences in fault activity.Unlike typical passive continental margin basins,the SNLU has experienced accelerated subsidence after the rifting phase,which began around 5.2 Ma ago.The possible mechanism for this abnormal post-rifting subsidence may be the decay or movement of the deep thermal source and the rapid cooling of the asthenosphere.Long-term and multi-episodic cooling and exhumation processes play a key role in the alteration of bedrock and contribute to the formation of reservoirs.On the other hand,rapid post-rifting subsidence(sedimentation)promotes the formation of cap rocks.展开更多
Predicting high-quality volcanic reservoirs is one of the key issues for oil and gas exploration in the Songnan gas field.Core,seismic,and measurement data were used to study the lithologies,facies,reservoir porosity,...Predicting high-quality volcanic reservoirs is one of the key issues for oil and gas exploration in the Songnan gas field.Core,seismic,and measurement data were used to study the lithologies,facies,reservoir porosity,and reservoir types of the volcanic rocks in the Songnan gas field.The primary controlling factors and characteristics of the high-quality volcanic reservoirs of the Yingcheng Formation in the Songnan gas field were investigated,including the volcanic eruptive stage,edifice,edifice facies,cooling unit,lithology,facies,and diagenesis.Stages with more volatile content can form more high-quality reservoirs.The effusive rhyolite,explosive tuff,and tuff lava that formed in the crater,near-crater,and proximal facies and in the high-volatility cooling units of large acidic-lava volcanic edifices are the most favorable locations for the development of the high-quality reservoirs in the Songnan gas field.Diagenesis dissolution,which is controlled by tectonic action,can increase the size of secondary pores in reservoirs.Studying the controlling factors of the high-quality reservoirs can provide a theoretical basis for the prediction and analysis of high-quality volcanic reservoirs.展开更多
基金The National Natural Science Foundation of China under contract No.42072181the CNOOC Research Project"Resource Potential,Reservoir Formation Mechanism and Breakthrough Direction of Potential Oil-rich Depressions in Offshore Basins of China(YXKY-ZX 012021)"。
文摘Significant advancements have been made in the study of Mesozoic granite buried hills in the Songnan Low Uplift(SNLU)of the Qiongdongnan Basin.These findings indicate that the bedrock buried hills in this basin hold great potential for exploration.Borehole samples taken from the granite buried hills in the SNLU were analyzed using apatite fission track(AFT)and zircon(U-Th)/He data to unravel the thermal history of the basement rock.This information is crucial for understanding the processes of exhumation and alteration that occurred after its formation.Thermal modeling of a sample from the western bulge of the SNLU revealed a prolonged cooling event from the late Mesozoic to the Oligocene period(~80-23.8 Ma),followed by a heating stage from the Miocene epoch until the present(~23.8 Ma to present).In contrast,the sample from the eastern bulge experienced a more complex thermal history.It underwent two cooling stages during the late Mesozoic to late Eocene period(~80-36.4 Ma)and the late Oligocene period(~30-23.8 Ma),interspersed with two heating phases during the late Eocene to early Oligocene period(~36.4-30 Ma)and the Miocene epoch to recent times(~23.8-0 Ma),respectively.The differences in exhumation histories between the western and eastern bulges during the late Eocene to Oligocene period in the SNLU can likely be attributed to differences in fault activity.Unlike typical passive continental margin basins,the SNLU has experienced accelerated subsidence after the rifting phase,which began around 5.2 Ma ago.The possible mechanism for this abnormal post-rifting subsidence may be the decay or movement of the deep thermal source and the rapid cooling of the asthenosphere.Long-term and multi-episodic cooling and exhumation processes play a key role in the alteration of bedrock and contribute to the formation of reservoirs.On the other hand,rapid post-rifting subsidence(sedimentation)promotes the formation of cap rocks.
基金Project(2009CB219306)supported by the National Basic Research Program of ChinaProject supported by the Key-Lab for Evolution of Past Lift and Environment in Northeast Asia,Ministry of Education,China+1 种基金Project supported by the third-phase Project 211 at Jilin University,ChinaProject supported by the Basic Research Fund of the Ministry of Education in 2009(Innovation Team Development Program,Jilin University)
文摘Predicting high-quality volcanic reservoirs is one of the key issues for oil and gas exploration in the Songnan gas field.Core,seismic,and measurement data were used to study the lithologies,facies,reservoir porosity,and reservoir types of the volcanic rocks in the Songnan gas field.The primary controlling factors and characteristics of the high-quality volcanic reservoirs of the Yingcheng Formation in the Songnan gas field were investigated,including the volcanic eruptive stage,edifice,edifice facies,cooling unit,lithology,facies,and diagenesis.Stages with more volatile content can form more high-quality reservoirs.The effusive rhyolite,explosive tuff,and tuff lava that formed in the crater,near-crater,and proximal facies and in the high-volatility cooling units of large acidic-lava volcanic edifices are the most favorable locations for the development of the high-quality reservoirs in the Songnan gas field.Diagenesis dissolution,which is controlled by tectonic action,can increase the size of secondary pores in reservoirs.Studying the controlling factors of the high-quality reservoirs can provide a theoretical basis for the prediction and analysis of high-quality volcanic reservoirs.