Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into tw...Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.展开更多
The Songshugou dunite body, which occupies an area of about 20 km2, is the largest ultramafic massif in the eastern Qinling orogenic belt, Central China. The major compo-nent of this body is dunitic rocks including my...The Songshugou dunite body, which occupies an area of about 20 km2, is the largest ultramafic massif in the eastern Qinling orogenic belt, Central China. The major compo-nent of this body is dunitic rocks including mylonitic dunite and coarse-grained dunite; they oc-cupy about 95 vol% of the total body. Petrography, mineral composition, major and trace ele-ments and primitive melt inclusions have been investigated in this paper; all revealed that this dunite body is the product of melt-rock interaction by porous percolation flow. In comparison with dunite sills or veins in harzburgite from the basal part of Oman ophiolite, this dunite body is characterized by lower contents of Al2O3, CaO and HREE but higher content of highly incom-patible elements and Zr and Hf. The LREE enriched patterns and primitive mantle normalized spidergrams of trace elements are also different from the Oman dunite. Combining with melt in-clusions observed in olivines, we conclude that this dunite body is the product of large- scale porous percolation flow of high-MgO melts within depleted mantle peridotites. The high-MgO magma, in essence, was most probably produced at the hot head of an upwelling mantle plume. The occurrence of the Songshugou dunite body is closely associated with the activity of mantle super-plume in Neo-Proterozoic era in the Yangtze Craton.展开更多
The Songshugou peridotite massif is located in the north of Shangdan suture zone, North Qinling orogenic belt of Central China. The massif is mainly composed of fine-grained mylonitic dunites, coarse-grained dunites, ...The Songshugou peridotite massif is located in the north of Shangdan suture zone, North Qinling orogenic belt of Central China. The massif is mainly composed of fine-grained mylonitic dunites, coarse-grained dunites, fine- and coarse-grained harzburgites, and minor clinopyroxenites. The coarsegrained dunites as well as parts of the harzburgites host small-scale chromitites? Chromite grains from various textural types of chromitites and dunites pervasively contain primary and secondary silicate inelusions. Primary inclusions are dominated by monophase olivine, with minor clinopyroxene and a few multiphase mineral assemblages consisting of olivine and clinopyroxene. Secondary inclusions, mainly Cr-chlorite and tremolite, show irregular crystal shapes. Besides, Cr2O3 contents (0.08 wt.%-0.71 wt.%) of primary olivine inclusions are remarkably higher than those of interstitial olivine (<0.1 wt.%). Chr0- mites in the Songshugou peridotite massif are high-Cr type, with Cr^# and Mg^# values ranging of 67.5-87.6, and 23.4-41.2, respectively. The Cr-chlorite, formed by reactions between olivine and chromite in the presence of fluid under middle temperature, indicates the Songshugou peridotite massif has undergone alteration/metamorphism process during emplacement. Chromite grains are modified by these processes, resulting in the various degrees of enrichment of Fe2O3, Cr2O3, Zn, Co and Mn, depletion of MgO, A12O3,Ga, Ti and Ni. Due to low silicate/chromite ratios in the massive ores, chromites from them are slightly influenced by alteration/metamorphism and thus preserve the pristine magmatic compositions. The parental magma calculated based on them has 11.17 wt.%-13.57 wt.% A12O3 and 0.15 wt.%-0.27 wt.% TiO2, which is similar to the parental melts of high-Cr chromitites from elsewhere and comparable with those of boninites. Combined with informations from previous studies, major and trace elements geochemistry of chromite, as well as the nature of the parental magma, it can be revealed that the Songshugou chromitities formed in a supra-subduction zone environment.展开更多
Ophiolites play a key role in understanding subduction-accretion-collision processes. Herein, we discuss origin and metamorphic evolution of an enigmatic, Neoproterozoic ophiolite candidate—the mafic-ultramafic Songs...Ophiolites play a key role in understanding subduction-accretion-collision processes. Herein, we discuss origin and metamorphic evolution of an enigmatic, Neoproterozoic ophiolite candidate—the mafic-ultramafic Songshugou Complex, Qinling belt, China—summarizing published thermobarometr);U/Pb geochronology, and geochemistry and presenting new phase equilibrium modeling. Garnet, rarely preserved in amphibolites of the Songshugou Complex, has prograde zoning and low-pvrope cores |Alm54-71(Grs+And)25-30PrP1-6Sps5-12. It formed at quartz eclogite facies conditions of 1.93-2.54 GPa, 462-542℃. During exhumation, garnet first was mantled by plagioclase-rich coronas at about 0.7-1.2 GPa, 660-710℃. During an isothermal uplift to 0.5-0.8 GPa, these coronas evolved widely into n-shaped aggregates and eventually into whitish ribbons oriented with a steeply southwest dipping mineral stretching lineation. The exhumation into middle-upper crustal levels proceeded till the Late Devonian. The oceanic protoliths of the eclogites were emplaced into continental crust in the Neoproterozoic and dragged into a subduction zone in North Qinling in the Cambrian. The ultramafic rocks of the Songshugou Complex were not subducted with the mafic rocks in a coherent block given the absence of garnet but ubiquitous occurrence of spinel implies a P maximum of ?1.7 GPa. Rather, mafic and ultramafic rocks belonged to downgoing and overriding plate, respectively. They were juxtaposed at 0.8-1.7 GPa at Early Ordovician time.展开更多
基金the National NaturalScience Foundation of China(Grant No:140032010-C,49972063)the National Key Basic Researchand Development Project of China(Grant No:G1999075508)+1 种基金the Ministry of Education's Teachers Fund(No:40133020) the Opening Fund of Key Laboratory of Lithosphere Tectonics.
文摘Geochemical studies on the arnphibolites in the Songshugou ophiolite from Shangnan County, Shaanxi Province demonstrate that the protolith of the amphibolites is tholeiitic. The arnphibolites can be classified into two groups according to their REE patterns and trace element features. Rocks of the first group are depleted in LREE while rocks of the second group are slightly depleted in LREE or flat from LREE to HREE without significant Eu anomaly. The first group of rocks have (La/Yb)N=0.33-0.55, (La/Sm)N= 0.45-0.65, and their La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are averaged at 1.20, 0.12, 31.02, 2.92 and 198, respectively, close to those of typical N-MORB. The second group of rocks have (La/Yb)N=0.63-0.95, (La/ Sm)N = 0.69--0.90, and their average La/Nb, Ce/Zr, Zr/Nb, Zr/Y and Ti/Y ratios are 0.82, 0.83, 1.15, 0.16, 19.00, 2.58 and 225, respectively, which lie between those of typical N-MORB and E-MORB but closer to the former. The two groups of rocks both exhibit flat patterns from Th to Yb in the highly incompatible elements spider diagram, but the first group of rocks have lower element abundances than the modern N-MORB, indicating a derivation of their mantle source from more depleted mantle source than the present N-MORB. The abundances of Th, Ta, Nb, La and Ce in the second group of rocks are slightly higher than those of the present N-MORB, and other elements, such as Hf, Zr, Sm, Ti, Y and Yb, are close to those of the N-MORB, indicating that the original magma was derived from depleted mantle but mixed with the enriched mantle. These characteristics, combined with the regional geology and previous studies, provide further evidence that the mafic-ultramafic rocks have the features of a typical ophiolite.Zircon grains from the amphibolite are generally rounded, and in most of them a distinguishable core-mantle texture is preserved as shown in the cathodoluminescence (CL) images. The core or core-mantle parts of the zircon grains are also rounded, same as those in basalts from other regions of the world. The LA-ICP-MS trace element and U-Pb isotopic analyses show that the zircon grains from the amphibolites are similar to the typical magmatic zircon in terms of their very low U and Th contents (62.36-0.10 μg/g and 78.47-0.003 μg/g, respectively). Seven pits from the core and core-mantle parts of the zircon grains yielded an average weighted 206Pb/ 238U age of 973±35 (2σ) Ma with the Th/U ratios range from 0.01 to 8.38 and mostly greater than 0.23. This age is consistent within the error range with the whole-rock Sm-Nd isochron age of 1030±46 Ma for the same kind of rocks reported by Dong et al. (1997a). In a combined analysis with the zircon positions on the CL images and the corresponding Th/U ratios, the age of 973±35 Ma is probably the formation age of tholeiite, the protolith of the Songshugou amphibolite. The geochronological determination gives further evidence that the Songshugou ophiolite was formed during the Neoproterozoic. In addition, there is one pit from the rim of a zircon grain giving a 206Pb/ 238U age of 5721199 (1σ) Ma with a Th/U ratio of 0.08. It may represent the age of the accretionary zircon in the amphibolite-facies metamorphism.
基金the Major State Basic Resesrch Development Projects(Gant No.2001CB409801)the National Natural Science Foundation of China(Grant No.49972075) the Foundation of Continental Dynamic Laboratory of Northwestern Univeristy.
文摘The Songshugou dunite body, which occupies an area of about 20 km2, is the largest ultramafic massif in the eastern Qinling orogenic belt, Central China. The major compo-nent of this body is dunitic rocks including mylonitic dunite and coarse-grained dunite; they oc-cupy about 95 vol% of the total body. Petrography, mineral composition, major and trace ele-ments and primitive melt inclusions have been investigated in this paper; all revealed that this dunite body is the product of melt-rock interaction by porous percolation flow. In comparison with dunite sills or veins in harzburgite from the basal part of Oman ophiolite, this dunite body is characterized by lower contents of Al2O3, CaO and HREE but higher content of highly incom-patible elements and Zr and Hf. The LREE enriched patterns and primitive mantle normalized spidergrams of trace elements are also different from the Oman dunite. Combining with melt in-clusions observed in olivines, we conclude that this dunite body is the product of large- scale porous percolation flow of high-MgO melts within depleted mantle peridotites. The high-MgO magma, in essence, was most probably produced at the hot head of an upwelling mantle plume. The occurrence of the Songshugou dunite body is closely associated with the activity of mantle super-plume in Neo-Proterozoic era in the Yangtze Craton.
基金financially supported by the National Natural Science Foundation of China (No. 41672064)the International Geoscience Programme “Diamonds and Recycled Mantle” (No. IGCP-649)
文摘The Songshugou peridotite massif is located in the north of Shangdan suture zone, North Qinling orogenic belt of Central China. The massif is mainly composed of fine-grained mylonitic dunites, coarse-grained dunites, fine- and coarse-grained harzburgites, and minor clinopyroxenites. The coarsegrained dunites as well as parts of the harzburgites host small-scale chromitites? Chromite grains from various textural types of chromitites and dunites pervasively contain primary and secondary silicate inelusions. Primary inclusions are dominated by monophase olivine, with minor clinopyroxene and a few multiphase mineral assemblages consisting of olivine and clinopyroxene. Secondary inclusions, mainly Cr-chlorite and tremolite, show irregular crystal shapes. Besides, Cr2O3 contents (0.08 wt.%-0.71 wt.%) of primary olivine inclusions are remarkably higher than those of interstitial olivine (<0.1 wt.%). Chr0- mites in the Songshugou peridotite massif are high-Cr type, with Cr^# and Mg^# values ranging of 67.5-87.6, and 23.4-41.2, respectively. The Cr-chlorite, formed by reactions between olivine and chromite in the presence of fluid under middle temperature, indicates the Songshugou peridotite massif has undergone alteration/metamorphism process during emplacement. Chromite grains are modified by these processes, resulting in the various degrees of enrichment of Fe2O3, Cr2O3, Zn, Co and Mn, depletion of MgO, A12O3,Ga, Ti and Ni. Due to low silicate/chromite ratios in the massive ores, chromites from them are slightly influenced by alteration/metamorphism and thus preserve the pristine magmatic compositions. The parental magma calculated based on them has 11.17 wt.%-13.57 wt.% A12O3 and 0.15 wt.%-0.27 wt.% TiO2, which is similar to the parental melts of high-Cr chromitites from elsewhere and comparable with those of boninites. Combined with informations from previous studies, major and trace elements geochemistry of chromite, as well as the nature of the parental magma, it can be revealed that the Songshugou chromitities formed in a supra-subduction zone environment.
基金supported by the National Natural Science Foundation of China (Nos. 41350110224, 41750110483, 41730426, 41872066)the Open Research Project of the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No. GPMR201820)
文摘Ophiolites play a key role in understanding subduction-accretion-collision processes. Herein, we discuss origin and metamorphic evolution of an enigmatic, Neoproterozoic ophiolite candidate—the mafic-ultramafic Songshugou Complex, Qinling belt, China—summarizing published thermobarometr);U/Pb geochronology, and geochemistry and presenting new phase equilibrium modeling. Garnet, rarely preserved in amphibolites of the Songshugou Complex, has prograde zoning and low-pvrope cores |Alm54-71(Grs+And)25-30PrP1-6Sps5-12. It formed at quartz eclogite facies conditions of 1.93-2.54 GPa, 462-542℃. During exhumation, garnet first was mantled by plagioclase-rich coronas at about 0.7-1.2 GPa, 660-710℃. During an isothermal uplift to 0.5-0.8 GPa, these coronas evolved widely into n-shaped aggregates and eventually into whitish ribbons oriented with a steeply southwest dipping mineral stretching lineation. The exhumation into middle-upper crustal levels proceeded till the Late Devonian. The oceanic protoliths of the eclogites were emplaced into continental crust in the Neoproterozoic and dragged into a subduction zone in North Qinling in the Cambrian. The ultramafic rocks of the Songshugou Complex were not subducted with the mafic rocks in a coherent block given the absence of garnet but ubiquitous occurrence of spinel implies a P maximum of ?1.7 GPa. Rather, mafic and ultramafic rocks belonged to downgoing and overriding plate, respectively. They were juxtaposed at 0.8-1.7 GPa at Early Ordovician time.