Acoustic metamaterials(AMMs)are a type of artificial materials that make use of appropriate structural designs and exhibit exotic properties not found in natural materials,such as negative effective material parameter...Acoustic metamaterials(AMMs)are a type of artificial materials that make use of appropriate structural designs and exhibit exotic properties not found in natural materials,such as negative effective material parameters(e.g.,bulk modulus,mass density,and refractive index).These interesting properties offer novel means for sound manipulation and thus have drawn a great deal of attention.Over the past two decades,tremendous progress has been made in the fundamental research of AMMs,which has not only promoted the development of modern acoustics but also shown the potential of AMMs for engineering applications.Here,we review recent developments in AMMs with a focus on their future engineering,especially in the most promising fields of sound absorption/isolation,acoustic imaging,cloaking,and so on,furthermore,we outline the opportunities and challenges they are encountering.展开更多
The time-cost of the propeller non-cavitation noise prediction can be greatly re- duced by the isolated blade method, which is validated via hybrid URANS and acoustic analogy, followed by the acoustic characteristics ...The time-cost of the propeller non-cavitation noise prediction can be greatly re- duced by the isolated blade method, which is validated via hybrid URANS and acoustic analogy, followed by the acoustic characteristics of propeller in time domain are analyzed. Firstly, we predicted the sound of the E779A propeller operating in uniform inflow and found a typical periodic characteristic of the sound pressure distribution on propeller blade as well as the sound signal of the receiver, and the result by the superimposing shifted sound signal from an isolated blade (isolated blade method) agreed well with the result by the integration on total blades, which validated the credibility of the isolated blade method in uniform inflow. Finally, we pre- dicted the sound of a propeller running in the wake of submarine by the isolated blade method, and the result also agreed well with the result by the integration on total blades, which further indicated that the isolated blade method was also applicable for the non-cavitation noise prediction of the propeller running in non-uniform inflow. The noise prediction of the counter-rotating propeller, the pump-jet can also benefit from this method.展开更多
基金supported by the National Key Research and Development Program of China(2017YFA0303702 and 2018YFA200)the National Natural Science Foundation of China(12172164,11625418,11774297,51732006,11890700,and 51721001)。
文摘Acoustic metamaterials(AMMs)are a type of artificial materials that make use of appropriate structural designs and exhibit exotic properties not found in natural materials,such as negative effective material parameters(e.g.,bulk modulus,mass density,and refractive index).These interesting properties offer novel means for sound manipulation and thus have drawn a great deal of attention.Over the past two decades,tremendous progress has been made in the fundamental research of AMMs,which has not only promoted the development of modern acoustics but also shown the potential of AMMs for engineering applications.Here,we review recent developments in AMMs with a focus on their future engineering,especially in the most promising fields of sound absorption/isolation,acoustic imaging,cloaking,and so on,furthermore,we outline the opportunities and challenges they are encountering.
基金supported by the National Natural Science Foundation of China(51409256,51309229,51307177)the Natural Science Foundation of Naval University of Engineering(HGDYYJJ13003)
文摘The time-cost of the propeller non-cavitation noise prediction can be greatly re- duced by the isolated blade method, which is validated via hybrid URANS and acoustic analogy, followed by the acoustic characteristics of propeller in time domain are analyzed. Firstly, we predicted the sound of the E779A propeller operating in uniform inflow and found a typical periodic characteristic of the sound pressure distribution on propeller blade as well as the sound signal of the receiver, and the result by the superimposing shifted sound signal from an isolated blade (isolated blade method) agreed well with the result by the integration on total blades, which validated the credibility of the isolated blade method in uniform inflow. Finally, we pre- dicted the sound of a propeller running in the wake of submarine by the isolated blade method, and the result also agreed well with the result by the integration on total blades, which further indicated that the isolated blade method was also applicable for the non-cavitation noise prediction of the propeller running in non-uniform inflow. The noise prediction of the counter-rotating propeller, the pump-jet can also benefit from this method.