Purpose: To analyze the effect of right versus left long-term single-sided deafness(SSD) on sound source localization(SSL), discuss the necessity of intervention and treatment for SSD patients, and analyze the therape...Purpose: To analyze the effect of right versus left long-term single-sided deafness(SSD) on sound source localization(SSL), discuss the necessity of intervention and treatment for SSD patients, and analyze the therapeutic effect of long-term unilateral cochlear implantation(UCI) from the perspective of SSL.Methods: This study included 25 patients with SSD, 11 patients with UCI, and 30 participants with normal hearing(NH). Their SSL ability was tested by obtaining their average root mean square(RMS) error values of SSL test.Results: The results showed that the RMS error value of SSD, UCI and NH groups were 52.26 ± 20.25°, 69.84 ±12.14° and 4.27 ± 2.66°, respectively. The ability of SSL was better in the SSD-L group than that in the SSD-R group, and no significant difference existed in the SSD-R and the UCI group.Conclusion: When bilateral deafness patients select unilateral treatment, right-side cochlear implantation may be more beneficial in terms of SSL, which means that the central auditory cortex in long-term SSD patients is affected differently based on which side their deafness occurs.展开更多
Microphone array-based sound source localization(SSL)is a challenging task in adverse acoustic scenarios.To address this,a novel SSL algorithm based on deep neural network(DNN)using steered response power-phase transf...Microphone array-based sound source localization(SSL)is a challenging task in adverse acoustic scenarios.To address this,a novel SSL algorithm based on deep neural network(DNN)using steered response power-phase transform(SRP-PHAT)spatial spectrum as input feature is presented in this paper.Since the SRP-PHAT spatial power spectrum contains spatial location information,it is adopted as the input feature for sound source localization.DNN is exploited to extract the efficient location information from SRP-PHAT spatial power spectrum due to its advantage on extracting high-level features.SRP-PHAT at each steering position within a frame is arranged into a vector,which is treated as DNN input.A DNN model which can map the SRP-PHAT spatial spectrum to the azimuth of sound source is learned from the training signals.The azimuth of sound source is estimated through trained DNN model from the testing signals.Experiment results demonstrate that the proposed algorithm significantly improves localization performance whether the training and testing condition setup are the same or not,and is more robust to noise and reverberation.展开更多
The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP se...The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP search method is proposed to reduce the computational complexity using small-aperture microphone array.The proposed method inspired by the SRP spatial spectrum includes two steps:first,the proposed method estimates the azimuth of the sound source roughly and determines whether the sound source is in far field or near field;then,different fine searching operations are performed according to the sound source being in far field or near field.Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computation complexity of the proposed method with those of the conventional SRP-PHAT algorithm.The results show that,the proposed method has a comparative accuracy with the conventional SRP algorithm,and achieves a reduction of 93.62%in computation complexity compared to the conventional SRP algorithm.展开更多
Microphone array-based sound source localization(SSL)is widely used in a variety of occasions such as video conferencing,robotic hearing,speech enhancement,speech recognition and so on.The traditional SSL methods cann...Microphone array-based sound source localization(SSL)is widely used in a variety of occasions such as video conferencing,robotic hearing,speech enhancement,speech recognition and so on.The traditional SSL methods cannot achieve satisfactory performance in adverse noisy and reverberant environments.In order to improve localization performance,a novel SSL algorithm using convolutional residual network(CRN)is proposed in this paper.The spatial features including time difference of arrivals(TDOAs)between microphone pairs and steered response power-phase transform(SRPPHAT)spatial spectrum are extracted in each Gammatone sub-band.The spatial features of different sub-bands with a frame are combine into a feature matrix as the input of CRN.The proposed algorithm employ CRN to fuse the spatial features.Since the CRN introduces the residual structure on the basis of the convolutional network,it reduce the difficulty of training procedure and accelerate the convergence of the model.A CRN model is learned from the training data in various reverberation and noise environments to establish the mapping regularity between the input feature and the sound azimuth.Through simulation verification,compared with the methods using traditional deep neural network,the proposed algorithm can achieve a better localization performance in SSL task,and provide better generalization capacity to untrained noise and reverberation.展开更多
The letter proposed a sound source localization method of digital hearing aids using wavelet based multivariate statistics with the Generalized Cross Correlation (GCC) algorithm. Haar wavelet is used to decompose GCC ...The letter proposed a sound source localization method of digital hearing aids using wavelet based multivariate statistics with the Generalized Cross Correlation (GCC) algorithm. Haar wavelet is used to decompose GCC sequences and extract four wavelet characteristics. And then, Hotelling T2 statistical method is used to fuse the four wavelet characteristics. The statistical value is used to judge the number of sound sources and obtain corresponding time delay estimation which is used to localize the position of sound source. The experimental results show that the proposed method has better robustness in an environment with severe noise and reverberation. Meanwhile, the complexity of al-gorithm is moderate, which is available for sound source localization of hearing aids.展开更多
The steered response power-phase transform (SRP-PHAT) sound source localization algorithm is robust in a real environment. However, the large computation complexity limits the practical application of SRP-PHAT. For a ...The steered response power-phase transform (SRP-PHAT) sound source localization algorithm is robust in a real environment. However, the large computation complexity limits the practical application of SRP-PHAT. For a microphone array, each location corresponds to a set of time differences of arrival (TDOAs), and this paper collects them into a TDOA vector. Since the TDOA vectors in the adjacent regions are similar, we present a fast algorithm based on clustering search to reduce the computation complexity of SRP-PHAT. In the training stage, the K-means or Iterative Self-Organizing Data Analysis Technique (ISODATA) clustering algorithm is used to find the centroid in each cluster with similar TDOA vectors. In the procedure of sound localization, the optimal cluster is found by comparing the steered response powers (SRPs) of all centroids. The SRPs of all candidate locations in the optimal cluster are compared to localize the sound source. Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computational load of the proposed method with those of the conventional SRP-PHAT algorithm. The results show that the proposed method is able to reduce the computational load drastically and maintains almost the same localization accuracy and robustness as those of the conventional SRP-PHAT algorithm. The difference in localization performance brought by different clustering algorithms used in the training stage is trivial.展开更多
A new sound source localization method with sound speed compensation is proposed to reduce the wind influence on the performance of conventional TDOA (Time Difference of Arrival) algorithms. First, the sound speed i...A new sound source localization method with sound speed compensation is proposed to reduce the wind influence on the performance of conventional TDOA (Time Difference of Arrival) algorithms. First, the sound speed is described as a set of functions of the unknown source location, to approximate the acoustic velocity field distribution in the wind field. Then, they are introduced into the TDOA algorithm, to construct nonlinear equations. Finally, the particle swarm optimization algorithm is used to estimate the source location. The simulation results show that the proposed algorithm can significantly improve the localization accuracy for different wind velocities, source locations and test area sizes. The experimental results show that the proposed method can reduce localization errors to about 40% of the original error in a four nodes localization system.展开更多
基金supported by the National Key Research and Development Project of China(2020YFC20052003 to S.M.Yang)Key International(Regional)Joint Research Program of National Natural Science Foundation of China(NSFC#81820108009 to S.M.Yang)National Natural Science Foundation of China(NSFC#82000976 to J.N.Li).
文摘Purpose: To analyze the effect of right versus left long-term single-sided deafness(SSD) on sound source localization(SSL), discuss the necessity of intervention and treatment for SSD patients, and analyze the therapeutic effect of long-term unilateral cochlear implantation(UCI) from the perspective of SSL.Methods: This study included 25 patients with SSD, 11 patients with UCI, and 30 participants with normal hearing(NH). Their SSL ability was tested by obtaining their average root mean square(RMS) error values of SSL test.Results: The results showed that the RMS error value of SSD, UCI and NH groups were 52.26 ± 20.25°, 69.84 ±12.14° and 4.27 ± 2.66°, respectively. The ability of SSL was better in the SSD-L group than that in the SSD-R group, and no significant difference existed in the SSD-R and the UCI group.Conclusion: When bilateral deafness patients select unilateral treatment, right-side cochlear implantation may be more beneficial in terms of SSL, which means that the central auditory cortex in long-term SSD patients is affected differently based on which side their deafness occurs.
基金This work is supported by the National Nature Science Foundation of China(NSFC)under Grant No.61571106Jiangsu Natural Science Foundation under Grant No.BK20170757the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under grant No.17KJD510002.
文摘Microphone array-based sound source localization(SSL)is a challenging task in adverse acoustic scenarios.To address this,a novel SSL algorithm based on deep neural network(DNN)using steered response power-phase transform(SRP-PHAT)spatial spectrum as input feature is presented in this paper.Since the SRP-PHAT spatial power spectrum contains spatial location information,it is adopted as the input feature for sound source localization.DNN is exploited to extract the efficient location information from SRP-PHAT spatial power spectrum due to its advantage on extracting high-level features.SRP-PHAT at each steering position within a frame is arranged into a vector,which is treated as DNN input.A DNN model which can map the SRP-PHAT spatial spectrum to the azimuth of sound source is learned from the training signals.The azimuth of sound source is estimated through trained DNN model from the testing signals.Experiment results demonstrate that the proposed algorithm significantly improves localization performance whether the training and testing condition setup are the same or not,and is more robust to noise and reverberation.
基金Supported by the National Natural Science Foundation of China(No.61201345)the Beijing Key Laboratory of Advanced Information Science and Network Technology(No.XDXX1308)
文摘The Steered Response Power(SRP)method works well for sound source localization in noisy and reverberant environment.However,the large computation complexity limits its practical application.In this paper,a fast SRP search method is proposed to reduce the computational complexity using small-aperture microphone array.The proposed method inspired by the SRP spatial spectrum includes two steps:first,the proposed method estimates the azimuth of the sound source roughly and determines whether the sound source is in far field or near field;then,different fine searching operations are performed according to the sound source being in far field or near field.Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computation complexity of the proposed method with those of the conventional SRP-PHAT algorithm.The results show that,the proposed method has a comparative accuracy with the conventional SRP algorithm,and achieves a reduction of 93.62%in computation complexity compared to the conventional SRP algorithm.
基金supported by Nature Science Research Project of Higher Education Institutions in Jiangsu Province under Grant No.21KJB510018National Nature Science Foundation of China (NSFC)under Grant No.62001215.
文摘Microphone array-based sound source localization(SSL)is widely used in a variety of occasions such as video conferencing,robotic hearing,speech enhancement,speech recognition and so on.The traditional SSL methods cannot achieve satisfactory performance in adverse noisy and reverberant environments.In order to improve localization performance,a novel SSL algorithm using convolutional residual network(CRN)is proposed in this paper.The spatial features including time difference of arrivals(TDOAs)between microphone pairs and steered response power-phase transform(SRPPHAT)spatial spectrum are extracted in each Gammatone sub-band.The spatial features of different sub-bands with a frame are combine into a feature matrix as the input of CRN.The proposed algorithm employ CRN to fuse the spatial features.Since the CRN introduces the residual structure on the basis of the convolutional network,it reduce the difficulty of training procedure and accelerate the convergence of the model.A CRN model is learned from the training data in various reverberation and noise environments to establish the mapping regularity between the input feature and the sound azimuth.Through simulation verification,compared with the methods using traditional deep neural network,the proposed algorithm can achieve a better localization performance in SSL task,and provide better generalization capacity to untrained noise and reverberation.
基金Supported by the National Natural Science Foundation of China (No. 60472058, No. 60975017)Jiangsu Provincial Natural Science Foundation (No. BK2008291)
文摘The letter proposed a sound source localization method of digital hearing aids using wavelet based multivariate statistics with the Generalized Cross Correlation (GCC) algorithm. Haar wavelet is used to decompose GCC sequences and extract four wavelet characteristics. And then, Hotelling T2 statistical method is used to fuse the four wavelet characteristics. The statistical value is used to judge the number of sound sources and obtain corresponding time delay estimation which is used to localize the position of sound source. The experimental results show that the proposed method has better robustness in an environment with severe noise and reverberation. Meanwhile, the complexity of al-gorithm is moderate, which is available for sound source localization of hearing aids.
基金supported by the National Natural Science Foundation of China(Grant Nos. 60971098 and 61201345)the Beijing Key Laboratory of Advanced Information Science and Network Technology(Grant No.XDXX1308)
文摘The steered response power-phase transform (SRP-PHAT) sound source localization algorithm is robust in a real environment. However, the large computation complexity limits the practical application of SRP-PHAT. For a microphone array, each location corresponds to a set of time differences of arrival (TDOAs), and this paper collects them into a TDOA vector. Since the TDOA vectors in the adjacent regions are similar, we present a fast algorithm based on clustering search to reduce the computation complexity of SRP-PHAT. In the training stage, the K-means or Iterative Self-Organizing Data Analysis Technique (ISODATA) clustering algorithm is used to find the centroid in each cluster with similar TDOA vectors. In the procedure of sound localization, the optimal cluster is found by comparing the steered response powers (SRPs) of all centroids. The SRPs of all candidate locations in the optimal cluster are compared to localize the sound source. Experiments both in simulation environments and real environments have been performed to compare the localization accuracy and computational load of the proposed method with those of the conventional SRP-PHAT algorithm. The results show that the proposed method is able to reduce the computational load drastically and maintains almost the same localization accuracy and robustness as those of the conventional SRP-PHAT algorithm. The difference in localization performance brought by different clustering algorithms used in the training stage is trivial.
基金supported by the National Natural Science Fundation of China(61501374)Underwater Information and Control Key Laboratory Fundation(9140C230310150C23102)
文摘A new sound source localization method with sound speed compensation is proposed to reduce the wind influence on the performance of conventional TDOA (Time Difference of Arrival) algorithms. First, the sound speed is described as a set of functions of the unknown source location, to approximate the acoustic velocity field distribution in the wind field. Then, they are introduced into the TDOA algorithm, to construct nonlinear equations. Finally, the particle swarm optimization algorithm is used to estimate the source location. The simulation results show that the proposed algorithm can significantly improve the localization accuracy for different wind velocities, source locations and test area sizes. The experimental results show that the proposed method can reduce localization errors to about 40% of the original error in a four nodes localization system.