期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sulfur deposition in sour gas reservoirs:laboratory and simulation study 被引量:4
1
作者 Xiao Guo Zhimin Du +2 位作者 Xuefeng Yang Yong Zhang Dekui Fu 《Petroleum Science》 SCIE CAS CSCD 2009年第4期405-414,共10页
Sulfur deposition in the formation, induced by a reduction in the solubility of the sulfur in the gas phase, may significantly reduce the inflow performance of sour gas wells and some wells in sour gas reservoirs have... Sulfur deposition in the formation, induced by a reduction in the solubility of the sulfur in the gas phase, may significantly reduce the inflow performance of sour gas wells and some wells in sour gas reservoirs have even become completely plugged with deposited sulfur within several months. Accurate prediction and effective management of sulfur deposition are crucial to the economic viability of sour gas reservoirs. In this paper, a dynamic flow experiment was carried out to investigate formation damage resulting from sulfur deposition using an improved experimental method. The core sample was extracted from the producing interval of the LG2 well, LG gas field in the Sichuan Basin. The experimental temperature was 26 °C and the initial pressure was 19 MPa. The displacement pressure continuously decreased from 19 to 10 MPa, and the depletion process lasted 15 days. Then the core was removed and dried. The core mass and core permeability were measured before and after experiments. Experimental results indicated that the core mass increased from 48.372 g before experiment to 48.386 g afterwards, while the core permeability reduced from 0.726 to 0.608 md during the experiment. Then the core was analyzed with a scanning electron microscope (SEM) and energy-dispersive X-ray mapping. The deposition pattern and micro-distribution of elemental sulfur was observed and the deposited elemental sulfur distributed as a film around the pore surface. 展开更多
关键词 sour gas reservoir sulfur deposition EXPERIMENT numerical simulation formation damage
下载PDF
Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates
2
作者 MA Yongsheng CAI Xunyu +9 位作者 LI Maowen LI Huili ZHU Dongya QIU Nansheng PANG Xiongqi ZENG Daqian KANG Zhijiang MA Anlai SHI Kaibo ZHANG Juntao 《Petroleum Exploration and Development》 SCIE 2024年第4期795-812,共18页
Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d... Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved. 展开更多
关键词 deep and ultra-deep marine carbonate mechanisms of hydrocarbon accumulation reef-beach facies high-sulfur sour gas reservoirs ultra-deep fault-controlled fractured-cavity reservoir wellbore sulfur deposition fluid-solid-thermal numerical simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部