We conducted rapid inversions of rupture process for the 2023 earthquake doublet occurred in SE Türkiye,the first with a magnitude of M_(W)7.8 and the second with a magnitude of M_(W)7.6,using teleseismic and str...We conducted rapid inversions of rupture process for the 2023 earthquake doublet occurred in SE Türkiye,the first with a magnitude of M_(W)7.8 and the second with a magnitude of M_(W)7.6,using teleseismic and strong-motion data.The teleseismic rupture models of the both events were obtained approximately 88 and 55 minutes after their occurrences,respectively.The rupture models indicated that the first event was an asymmetric bilateral event with ruptures mainly propagating to the northeast,while the second one was a unilateral event with ruptures propagating to the west.This information could be useful in locating the meizoseismal areas.Compared with teleseismic models,the strong-motion models showed relatively higher resolution.A noticeable difference was found for the M_(W)7.6 earthquake,for which the strong-motion models shows a bilateral event,rather than a unilateral event,but the dominant rupture direction is still westward.Nevertheless,all strong-motion models are consistent with the teleseismic models in terms of magnitudes,durations,and dominant rupture directions.This suggests that both teleseismic and strong-motion data can be used for fast determination of major source characteristics.In contrast,the strong-motion data would be preferable in future emergency responses since they are recorded earlier and have a better resolution ability on the source ruptures.展开更多
In the contrast source inversion(CSI)method,the contrast sources(equiva-lent scattering sources)and the contrast(parameter perturbation)are iteratively recon-structed by an alternating optimization scheme.Traditionall...In the contrast source inversion(CSI)method,the contrast sources(equiva-lent scattering sources)and the contrast(parameter perturbation)are iteratively recon-structed by an alternating optimization scheme.Traditionally integral equation CSI method is formulated for transmission tomography using analytic Green’s function in homogeneous background.To extend the method to the case of reflection seismology,in this paper,we use WKBJ method to compute the Green’s function of depth dependent background media and the solving method of equations to initialize the contrast source of different frequencies,resulting in an efficient method to invert multi-frequency reflection seismic data–multi-frequency contrast source inversion method(MFCSI).Numerical results for the Marmousi model show that MFCSI method can obtain good results even when low frequency data are missing,in which case the conventional FWI fails.展开更多
A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single mode...A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single model space shows instabilities and trade-offs of the solutions. We separate the model space into N-subspaces based on their physical properties or computational convenience and solve the N-subspaces systems by damped least-squares and singular-value decomposition. Since the condition number of each subsystem is smaller than that of the single global system,the approach can greatly increase the stability of the inversion. We also introduce different damping factors into the subsystems to reduce the tradeoffs between the different parameters. The damping factors depend on the conditioning of the subsystems and may be adequately chosen in a range from 0.1 % to 10 % of the largest singular value. We illustrate the method with an example of simultaneous determination of source history,source geometry,and hypocentral location from regional seismograms,although it is applicable to any geophysical inversion.展开更多
The use of geodetic observation data for seismic fault parameters inversion is the research hotspot of geodetic inversion, and it is also the focus of studying the mechanism of earthquake occurrence. Seismic fault par...The use of geodetic observation data for seismic fault parameters inversion is the research hotspot of geodetic inversion, and it is also the focus of studying the mechanism of earthquake occurrence. Seismic fault parameters inversion has nonlinear characteristics, and the gradient-based optimizer(GBO) has the characteristics of fast convergence speed and falling into local optimum hardly. This paper applies GBO algorithm to simulated earthquakes and real LuShan earthquakes in the nonlinear inversion of the Okada model to obtain the source parameters. The simulated earthquake experiment results show that the algorithm is stable, and the seismic source parameters obtained by GBO are slightly closer to the true value than the multi peak particle swarm optimization(MPSO). In the 2013 LuShan earthquake experiment, the root mean square error between the deformation after forwarding of fault parameters obtained by the introduced GBO algorithm and the surface observation deformation was 3.703 mm, slightly better than 3.708 mm calculated by the MPSO. Moreover, the inversion result of GBO algorithm is better than MPSO algorithm in stability. The above results show that the introduced GBO algorithm has a certain practical application value in seismic fault source parameters inversion.展开更多
This study proposes a source distribution inversion convolutional neural network (SDICNN), which is deep neural network model for the inversion of complex source distributions, to solve inversion problems involving fi...This study proposes a source distribution inversion convolutional neural network (SDICNN), which is deep neural network model for the inversion of complex source distributions, to solve inversion problems involving fixed-source distributions. A function is developed to obtain the distribution information of complex source terms from radiation parameters at individual sampling points in space. The SDICNN comprises two components:a fully connected network and a convolutional neural network. The fully connected network mainly extracts the parameter measurement information from the sampling points,whereas the convolutional neural network mainly completes the fine inversion of the source-term distribution. Finally, the SDICNN obtains a high-resolution source-term distribution image. In this study, the proposed source-term inversion method is evaluated based on typical geometric scenarios. The results show that, unlike the conventional fully connected neural network, the SDICNN model can extract the two-dimensional distribution features of the source terms, and its inversion results are better. In addition, the effects of the shielding mechanism and number of sampling points on the inversion process are examined. In summary, the result of this study can facilitate the accurate assessment of dose distributions in nuclear facilities.展开更多
Aiming at the Four-Dimensional Variation source term inversion algorithm proposed earlier,the observation error regularization factor is introduced to improve the prediction accuracy of the diffusion model,and an impr...Aiming at the Four-Dimensional Variation source term inversion algorithm proposed earlier,the observation error regularization factor is introduced to improve the prediction accuracy of the diffusion model,and an improved Four-Dimensional Variation source term inversion algorithm with observation error regularization(OER-4DVAR STI model)is formed.Firstly,by constructing the inversion process and basic model of OER-4DVAR STI model,its basic principle and logical structure are studied.Secondly,the observation error regularization factor estimation method based on Bayesian optimization is proposed,and the error factor is separated and optimized by two parameters:error statistical time and deviation degree.Finally,the scientific,feasible and advanced nature of the OER-4DVAR STI model are verified by numerical simulation and tracer test data.The experimental results show that OER-4DVAR STI model can better reverse calculate the hazard source term information under the conditions of high atmospheric stability and flat underlying surface.Compared with the previous inversion algorithm,the source intensity estimation accuracy of OER-4DVAR STI model is improved by about 46.97%,and the source location estimation accuracy is improved by about 26.72%.展开更多
In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-...In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.展开更多
The eruption of the Anak Krakatau volcano,Indonesia,on 22 December 2018 induced a destructive tsunami(the Sunda Strait tsunami),which was recorded by four nearby tidal gauges.In this study we invert the tsunami record...The eruption of the Anak Krakatau volcano,Indonesia,on 22 December 2018 induced a destructive tsunami(the Sunda Strait tsunami),which was recorded by four nearby tidal gauges.In this study we invert the tsunami records and recover the tsunami generation process.Two tsunami sources are obtained,a static one of instant initial water elevation and a time-dependent one accounting for the continuous evolution of water height.The time-dependent results are found to reproduce the tsunami recordings more satisfactorily.The complete tsunami generation process lasts approximately 9 min and features a two-stage evolution with similar intensity.Each stage lasts about 3.5 min and elevates a water volume of about 0.13 km3.The time,duration and volume of the volcano eruption in general agree with seismic records and geomorphological interpretations.We also test different sizes of the potential source region,which lead to different maximum wave height in the source area,but all the results of time-dependent tsunami sources show the robust feature of two stages of wave generation.Our results imply a time-dependent and complex process of tsunami generation during the volcano eruption.展开更多
This paper considers an inverse problem for a partial differential equation to identify a pollution point source in a watershed. The mathematical model of the problem is a weakly coupled system of two linear parabolic...This paper considers an inverse problem for a partial differential equation to identify a pollution point source in a watershed. The mathematical model of the problem is a weakly coupled system of two linear parabolic equations for the concentrations u(x, t) and v(x, t) with an unknown point source F(x, t) = A( t)δ(x- s) related to the concentration u(x, t), where s is the point source location and A(t) is the amplitude of the pollution point source. Assuming that source F becomes inactive after time T*, it is proved that it can be uniquely determined by the indirect measurements { v(0, t), v( a, t), v( b, t), v( l, t), 0 〈 t ≤ T, T* 〈 T}, and, thus, the local Lipschitz stability for this inverse source problem is obtained. Based on the proof of its uniqueness, an inversion scheme is presented to determine the point source. Finally, two numerical examples are given to show the feasibility of the inversion scheme.展开更多
Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and...Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.展开更多
With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better loca...With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better locate earthquakes and invert their source mechanisms by fitting synthetics to observed waveforms. In this study, we develop an approach to determine both the earthquake location and source mechanism from waveform information. The observed waveforms are filtered in different frequency bands and separated into windows for the individual phases. Instead of picking the arrival times, the traveltime differences are measured by cross-correlation between synthetic waveforms based on the 3D Earth model and observed waveforms. The earthquake location is determined by minimizing the cross-correlation traveltime differences. We then fix the horizontal location of the earthquake and perform a grid search in depth to determine the source mechanism at each point by fitting the synthetic and observed waveforms. This new method is verified by a synthetic test with noise added to the synthetic waveforms and a realistic station distribution. We apply this method to a series of Mw3.4-5.6 earthquakes in the Longmenshan fault (LMSF) zone, a region with rugged topography between the eastern margin of the Tibetan plateau and the western part of the Sichuan basin. The results show that our solutions result in improved waveform fits compared to the source parameters from the catalogs we used and the location can be better constrained than the amplitude-only approach. Furthermore, the source solutions with realistic topography provide a better fit to the observed waveforms than those without the topography, indicating the need to take the topography into account in regions with rugged topography.展开更多
The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, w...The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, which is referred to be an inverse source problem of a plate equation. The uniqueness theorem for this problem is stated, and the fundamental solution to the plate equation is derived. In the case that the plate is driven by the harmonic load, the fundamental solution method (FSM) and the Tikhonov regularization technique axe used to calculate the source term. Numerical experiments of the Euler-Bernoulli beam and the Kirchhoff-Love plate show that the FSM can work well for practical use, no matter the source term is smooth or piecewise.展开更多
The mechanisms of the February 3, 1996 Lijiang main shock, Yunnan Province, are estimated by using the principle to inverse the mechanisms of two point sources simultaneously. The results are that the main shock of Li...The mechanisms of the February 3, 1996 Lijiang main shock, Yunnan Province, are estimated by using the principle to inverse the mechanisms of two point sources simultaneously. The results are that the main shock of Lijiang consists of two large ruptures, the time difference and the distance between the two ruptures are about 12 s (by the inversion) and about 26 km respectively. An extensional normal with strike-slip fault in about the north-south direction was formed by the first rupture, the mechanism of the second rupture is to be further studied. The method to inverse mechanisms of two point sources at the same time and the results obtained by directly analyzing P waveform records of the main shock are introduced, some related problems are also discussed. The Wuding earthquakes of October, 1995 and the Lijiang earthquake are considered to be the manifestation of the same dynamic process at different temporal and spatial points and the occurrence order of the two earthquakes is related to the direction of dynamics transmission.展开更多
Identifying source information after river chemical spill occurrences is critical for emergency responses.However,the inverse uncertainty characteristics of this kind of pollution source inversion problem have not yet...Identifying source information after river chemical spill occurrences is critical for emergency responses.However,the inverse uncertainty characteristics of this kind of pollution source inversion problem have not yet been clearly elucidated.To fill this gap,stochastic analysis approaches,including a regional sensitivity analysis method,identifiability plot and perturbation methods,were employed to conduct an empirical investigation on generic inverse uncertainty characteristics under a well-accepted uncertainty analysis framework.Case studies based on field tracer experiments and synthetic numerical tracer experiments revealed several new rules.For example,the release load can be most easily inverted,and the source location is responsible for the largest uncertainty among the source parameters.The diffusion and convection processes are more sensitive than the dilution and pollutant attenuation processes to the optimization of objective functions in terms of structural uncertainty.The differences among the different objective functions are smaller for instantaneous release than for continuous release cases.Small monitoring errors affect the inversion results only slightly,which can be ignored in practice.Interestingly,the estimated values of the release location and time negatively deviate from the real values,and the extent is positively correlated with the relative size of the mixing zone to the objective river reach.These new findings improve decision making in emergency responses to sudden water pollution and guide the monitoring network design.展开更多
In this paper,we mainly study an inverse source problem of time fractional diffusion equation in a bounded domain with an over-specified terminal condition at a fixed time.A novel regularization method,which we call t...In this paper,we mainly study an inverse source problem of time fractional diffusion equation in a bounded domain with an over-specified terminal condition at a fixed time.A novel regularization method,which we call the exponential Tikhonov regularization method with a parameter γ,is proposed to solve the inverse source problem,and the corresponding convergence analysis is given under a-priori and a-posteriori regularization parameter choice rules.Whenγis less than or equal to zero,the optimal convergence rate can be achieved and it is independent of the value of γ.However,when γ is greater than zero,the optimal convergence rate depends on the value of γ which is related to the regularity of the unknown source.Finally,numerical experiments are conducted for showing the effectiveness of the proposed exponential regularization method.展开更多
In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a spa...In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a sparse structure.Here the sparsity is understood with respect to the pixel basis,i.e.,the source has a small support.By an elastic-net regularization method,this inverse source problem is formulated into an optimization problem and a semismooth Newton(SSN)algorithm is developed to solve it.A discretization strategy is applied in the numerical realization.Several one and two dimensional numerical examples illustrate the efficiency of the proposed method.展开更多
Knowledge of helium diffusion kinetics is critical for materials in which helium measurements are made,particulary for thermochronology.In most cases the helium ages were younger than expected,an observation attribute...Knowledge of helium diffusion kinetics is critical for materials in which helium measurements are made,particulary for thermochronology.In most cases the helium ages were younger than expected,an observation attributes to diffusive loss of helium and the ejection of high energy alpha particles.Therefore it is important to accurately calculate the distribution of the source term within a sample.In this paper,the prediction of the helium concentrations as function of a spatially variable source term are considered.Both the forward and inverse solutions are presented.Under the assumption of radially symmetric geometry,an analytical solution is deduced based on the eigenfunction expansion.Two regularization methods,the Tikhonov regularization and the spectral cutoff regularization,are considered to obtain the regularized solution.Error estimates with optimal convergence order are shown between the exact solution and the regularized solution.Numerical examples are presented to illustrate the validity and effectiveness of the proposed methods.展开更多
A new method of the reproducing kernel Hilbert space is applied to a twodimensional parabolic inverse source problem with the final overdetermination. The exact and approximate solutions are both obtained in a reprodu...A new method of the reproducing kernel Hilbert space is applied to a twodimensional parabolic inverse source problem with the final overdetermination. The exact and approximate solutions are both obtained in a reproducing kernel space. The approximate solution and its partial derivatives are proved to converge to the exact solution and its partial derivatives, respectively. A technique is proposed to improve some existing methods. Numerical results show that the method is of high precision, and confirm the robustness of our method for reconstructing source parameter.展开更多
This paper deals with discontinuous dual reciprocity boundary element method for solving an inverse source problem.The aim of this work is to determine the source term in elliptic equations for nonhomogenous anisotrop...This paper deals with discontinuous dual reciprocity boundary element method for solving an inverse source problem.The aim of this work is to determine the source term in elliptic equations for nonhomogenous anisotropic media,where some additional boundary measurements are required.An equivalent formulation to the primary inverse problem is established based on the minimization of a functional cost,where a regularization term is employed to eliminate the oscillations of the noisy data.Moreover,an efficient algorithm is presented and tested for some numerical examples.展开更多
In this research, an arbitrarily oriented electric dipole at subsurface is used to simulate Seismogenic Electromagnetic(SEM) radiation emanating from a seismic zone during its gestation phase. Analytical synthesis of ...In this research, an arbitrarily oriented electric dipole at subsurface is used to simulate Seismogenic Electromagnetic(SEM) radiation emanating from a seismic zone during its gestation phase. Analytical synthesis of responses at the Lijiang magnetotelluric(MT) station has revealed that SEM radiation could induce identifiable anomalies in the electromagnetic(EM)spectrum, apparent resistivity and phase within specific frequency bands. Background variations were extracted from long-term observation data of Dali and Lijiang MT stations, enabling the identification of SEM anomalies related to the Yunlong and Yangbi earthquakes. Multiple parameters of dipole sources at subsurface were obtained by applying the Differential Ant Colony Optimization(DACO) algorithm to anomalous data of two stations with multi-frequencies and various response functions. The spatial distribution of these predicted dipoles is predominantly clustered in or around the seismogenic area, with their azimuthal orientation aligning towards the seismogenic fault in general. This study has demonstrated the potential of using subsurface electric dipole simulations for SEM radiation analysis, offering a feasible approach for the prediction and understanding of seismogenic zones.展开更多
基金supported by the National Key Research and Development Program of China(2022YFF0800603).
文摘We conducted rapid inversions of rupture process for the 2023 earthquake doublet occurred in SE Türkiye,the first with a magnitude of M_(W)7.8 and the second with a magnitude of M_(W)7.6,using teleseismic and strong-motion data.The teleseismic rupture models of the both events were obtained approximately 88 and 55 minutes after their occurrences,respectively.The rupture models indicated that the first event was an asymmetric bilateral event with ruptures mainly propagating to the northeast,while the second one was a unilateral event with ruptures propagating to the west.This information could be useful in locating the meizoseismal areas.Compared with teleseismic models,the strong-motion models showed relatively higher resolution.A noticeable difference was found for the M_(W)7.6 earthquake,for which the strong-motion models shows a bilateral event,rather than a unilateral event,but the dominant rupture direction is still westward.Nevertheless,all strong-motion models are consistent with the teleseismic models in terms of magnitudes,durations,and dominant rupture directions.This suggests that both teleseismic and strong-motion data can be used for fast determination of major source characteristics.In contrast,the strong-motion data would be preferable in future emergency responses since they are recorded earlier and have a better resolution ability on the source ruptures.
基金supported by the National Science and Technology of Major Projects of China(grant no.2016ZX05024-001-004)the WTOPI Research Consortium of Modeling and Imaging Laboratory,University of California Santa Cruz,US。
文摘In the contrast source inversion(CSI)method,the contrast sources(equiva-lent scattering sources)and the contrast(parameter perturbation)are iteratively recon-structed by an alternating optimization scheme.Traditionally integral equation CSI method is formulated for transmission tomography using analytic Green’s function in homogeneous background.To extend the method to the case of reflection seismology,in this paper,we use WKBJ method to compute the Green’s function of depth dependent background media and the solving method of equations to initialize the contrast source of different frequencies,resulting in an efficient method to invert multi-frequency reflection seismic data–multi-frequency contrast source inversion method(MFCSI).Numerical results for the Marmousi model show that MFCSI method can obtain good results even when low frequency data are missing,in which case the conventional FWI fails.
基金supported by Innovation Project of Chinese Academy of Sciences
文摘A method for simultaneous determination of mixed model parameters,which have different physical dimensions or different responses to data,is presented.Mixed parameter estimation from observed data within a single model space shows instabilities and trade-offs of the solutions. We separate the model space into N-subspaces based on their physical properties or computational convenience and solve the N-subspaces systems by damped least-squares and singular-value decomposition. Since the condition number of each subsystem is smaller than that of the single global system,the approach can greatly increase the stability of the inversion. We also introduce different damping factors into the subsystems to reduce the tradeoffs between the different parameters. The damping factors depend on the conditioning of the subsystems and may be adequately chosen in a range from 0.1 % to 10 % of the largest singular value. We illustrate the method with an example of simultaneous determination of source history,source geometry,and hypocentral location from regional seismograms,although it is applicable to any geophysical inversion.
基金the National Natural Science Foundation of China(Nos.42174011and 41874001).
文摘The use of geodetic observation data for seismic fault parameters inversion is the research hotspot of geodetic inversion, and it is also the focus of studying the mechanism of earthquake occurrence. Seismic fault parameters inversion has nonlinear characteristics, and the gradient-based optimizer(GBO) has the characteristics of fast convergence speed and falling into local optimum hardly. This paper applies GBO algorithm to simulated earthquakes and real LuShan earthquakes in the nonlinear inversion of the Okada model to obtain the source parameters. The simulated earthquake experiment results show that the algorithm is stable, and the seismic source parameters obtained by GBO are slightly closer to the true value than the multi peak particle swarm optimization(MPSO). In the 2013 LuShan earthquake experiment, the root mean square error between the deformation after forwarding of fault parameters obtained by the introduced GBO algorithm and the surface observation deformation was 3.703 mm, slightly better than 3.708 mm calculated by the MPSO. Moreover, the inversion result of GBO algorithm is better than MPSO algorithm in stability. The above results show that the introduced GBO algorithm has a certain practical application value in seismic fault source parameters inversion.
基金supported by the Platform Development Foundation of the China Institute for Radiation Protection (No. YP21030101)the National Natural Science Foundation of China (General Program)(Nos. 12175114, U2167209)+1 种基金the National Key R&D Program of China (No. 2021YFF0603600)the Tsinghua University Initiative Scientific Research Program (No. 20211080081)。
文摘This study proposes a source distribution inversion convolutional neural network (SDICNN), which is deep neural network model for the inversion of complex source distributions, to solve inversion problems involving fixed-source distributions. A function is developed to obtain the distribution information of complex source terms from radiation parameters at individual sampling points in space. The SDICNN comprises two components:a fully connected network and a convolutional neural network. The fully connected network mainly extracts the parameter measurement information from the sampling points,whereas the convolutional neural network mainly completes the fine inversion of the source-term distribution. Finally, the SDICNN obtains a high-resolution source-term distribution image. In this study, the proposed source-term inversion method is evaluated based on typical geometric scenarios. The results show that, unlike the conventional fully connected neural network, the SDICNN model can extract the two-dimensional distribution features of the source terms, and its inversion results are better. In addition, the effects of the shielding mechanism and number of sampling points on the inversion process are examined. In summary, the result of this study can facilitate the accurate assessment of dose distributions in nuclear facilities.
基金Ministry of Science and Technology of the People’s Republic of China for its support and guidance(Grant No.2018YFC0214100)。
文摘Aiming at the Four-Dimensional Variation source term inversion algorithm proposed earlier,the observation error regularization factor is introduced to improve the prediction accuracy of the diffusion model,and an improved Four-Dimensional Variation source term inversion algorithm with observation error regularization(OER-4DVAR STI model)is formed.Firstly,by constructing the inversion process and basic model of OER-4DVAR STI model,its basic principle and logical structure are studied.Secondly,the observation error regularization factor estimation method based on Bayesian optimization is proposed,and the error factor is separated and optimized by two parameters:error statistical time and deviation degree.Finally,the scientific,feasible and advanced nature of the OER-4DVAR STI model are verified by numerical simulation and tracer test data.The experimental results show that OER-4DVAR STI model can better reverse calculate the hazard source term information under the conditions of high atmospheric stability and flat underlying surface.Compared with the previous inversion algorithm,the source intensity estimation accuracy of OER-4DVAR STI model is improved by about 46.97%,and the source location estimation accuracy is improved by about 26.72%.
基金supported by National Natural Science Foundation of China(12271277)the Open Research Fund of Key Laboratory of Nonlinear Analysis&Applications(Central China Normal University),Ministry of Education,China.
文摘In this article,we consider the diffusion equation with multi-term time-fractional derivatives.We first derive,by a subordination principle for the solution,that the solution is positive when the initial value is non-negative.As an application,we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain.Finally,several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1901602,11632012,41861144024 and 41974017).
文摘The eruption of the Anak Krakatau volcano,Indonesia,on 22 December 2018 induced a destructive tsunami(the Sunda Strait tsunami),which was recorded by four nearby tidal gauges.In this study we invert the tsunami records and recover the tsunami generation process.Two tsunami sources are obtained,a static one of instant initial water elevation and a time-dependent one accounting for the continuous evolution of water height.The time-dependent results are found to reproduce the tsunami recordings more satisfactorily.The complete tsunami generation process lasts approximately 9 min and features a two-stage evolution with similar intensity.Each stage lasts about 3.5 min and elevates a water volume of about 0.13 km3.The time,duration and volume of the volcano eruption in general agree with seismic records and geomorphological interpretations.We also test different sizes of the potential source region,which lead to different maximum wave height in the source area,but all the results of time-dependent tsunami sources show the robust feature of two stages of wave generation.Our results imply a time-dependent and complex process of tsunami generation during the volcano eruption.
基金The National Natural Science Foundation of China(No.10861001)the Natural Science Foundation of Jiangxi Province
文摘This paper considers an inverse problem for a partial differential equation to identify a pollution point source in a watershed. The mathematical model of the problem is a weakly coupled system of two linear parabolic equations for the concentrations u(x, t) and v(x, t) with an unknown point source F(x, t) = A( t)δ(x- s) related to the concentration u(x, t), where s is the point source location and A(t) is the amplitude of the pollution point source. Assuming that source F becomes inactive after time T*, it is proved that it can be uniquely determined by the indirect measurements { v(0, t), v( a, t), v( b, t), v( l, t), 0 〈 t ≤ T, T* 〈 T}, and, thus, the local Lipschitz stability for this inverse source problem is obtained. Based on the proof of its uniqueness, an inversion scheme is presented to determine the point source. Finally, two numerical examples are given to show the feasibility of the inversion scheme.
基金Supported by the National Natural Science Foundation of China(21676216)China Postdoctoral Science Foundation(2015M582667)+2 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2016JQ5079)Key Research Project of Shaanxi Province(2015ZDXM-GY-115)the Fundamental Research Funds for the Central Universities(xjj2017124)
文摘Source term identification is very important for the contaminant gas emission event. Thus, it is necessary to study the source parameter estimation method with high computation efficiency, high estimation accuracy and reasonable confidence interval. Tikhonov regularization method is a potential good tool to identify the source parameters. However, it is invalid for nonlinear inverse problem like gas emission process. 2-step nonlinear and linear PSO (partial swarm optimization)-Tikhonov regularization method proposed previously have estimated the emission source parameters successfully. But there are still some problems in computation efficiency and confidence interval. Hence, a new 1-step nonlinear method combined Tikhonov regularizafion and PSO algorithm with nonlinear forward dispersion model was proposed. First, the method was tested with simulation and experiment cases. The test results showed that 1-step nonlinear hybrid method is able to estimate multiple source parameters with reasonable confidence interval. Then, the estimation performances of different methods were compared with different cases. The estimation values with 1-step nonlinear method were close to that with 2-step nonlinear and linear PSO-Tikhonov regularization method, 1-step nonlinear method even performs better than other two methods in some cases, especially for source strength and downwind distance estimation. Compared with 2-step nonlinear method, 1-step method has higher computation efficiency. On the other hand, the confidence intervals with the method proposed in this paper seem more reasonable than that with other two methods. Finally, single PSO algorithm was compared with 1-step nonlinear PSO-Tikhonov hybrid regularization method. The results showed that the skill scores of 1-step nonlinear hybrid method to estimate source parameters were close to that of single PSO method and even better in some cases. One more important property of 1-step nonlinear PSO-Tikhonov regularization method is its reasonable confidence interval, which is not obtained by single PSO algorithm. Therefore, 1-step nonlinear hybrid regularization method proposed in this paper is a potential good method to estimate contaminant gas emission source term.
基金supported by National Natural Science Foundation of China (Grants No.41374056)the Fundamental Research Funds for the Central Universities (WK2080000053)
文摘With dense seismic arrays and advanced imaging methods, regional three-dimensional (3D) Earth models have become more accurate. It is now increasingly feasible and advantageous to use a 3D Earth model to better locate earthquakes and invert their source mechanisms by fitting synthetics to observed waveforms. In this study, we develop an approach to determine both the earthquake location and source mechanism from waveform information. The observed waveforms are filtered in different frequency bands and separated into windows for the individual phases. Instead of picking the arrival times, the traveltime differences are measured by cross-correlation between synthetic waveforms based on the 3D Earth model and observed waveforms. The earthquake location is determined by minimizing the cross-correlation traveltime differences. We then fix the horizontal location of the earthquake and perform a grid search in depth to determine the source mechanism at each point by fitting the synthetic and observed waveforms. This new method is verified by a synthetic test with noise added to the synthetic waveforms and a realistic station distribution. We apply this method to a series of Mw3.4-5.6 earthquakes in the Longmenshan fault (LMSF) zone, a region with rugged topography between the eastern margin of the Tibetan plateau and the western part of the Sichuan basin. The results show that our solutions result in improved waveform fits compared to the source parameters from the catalogs we used and the location can be better constrained than the amplitude-only approach. Furthermore, the source solutions with realistic topography provide a better fit to the observed waveforms than those without the topography, indicating the need to take the topography into account in regions with rugged topography.
文摘The elastic plate vibration model is studied under the external force. The size of the source term by the given mode of the source and some observations from the body of the plate is determined over a time interval, which is referred to be an inverse source problem of a plate equation. The uniqueness theorem for this problem is stated, and the fundamental solution to the plate equation is derived. In the case that the plate is driven by the harmonic load, the fundamental solution method (FSM) and the Tikhonov regularization technique axe used to calculate the source term. Numerical experiments of the Euler-Bernoulli beam and the Kirchhoff-Love plate show that the FSM can work well for practical use, no matter the source term is smooth or piecewise.
文摘The mechanisms of the February 3, 1996 Lijiang main shock, Yunnan Province, are estimated by using the principle to inverse the mechanisms of two point sources simultaneously. The results are that the main shock of Lijiang consists of two large ruptures, the time difference and the distance between the two ruptures are about 12 s (by the inversion) and about 26 km respectively. An extensional normal with strike-slip fault in about the north-south direction was formed by the first rupture, the mechanism of the second rupture is to be further studied. The method to inverse mechanisms of two point sources at the same time and the results obtained by directly analyzing P waveform records of the main shock are introduced, some related problems are also discussed. The Wuding earthquakes of October, 1995 and the Lijiang earthquake are considered to be the manifestation of the same dynamic process at different temporal and spatial points and the occurrence order of the two earthquakes is related to the direction of dynamics transmission.
基金funded by the China Postdoctoral Science Foundation(Grant No.2014M551249)the National Natural Science Foundation of China(Grant No.51509061)support was provided by the Southern University of Science and Technology(Grant No.G01296001).
文摘Identifying source information after river chemical spill occurrences is critical for emergency responses.However,the inverse uncertainty characteristics of this kind of pollution source inversion problem have not yet been clearly elucidated.To fill this gap,stochastic analysis approaches,including a regional sensitivity analysis method,identifiability plot and perturbation methods,were employed to conduct an empirical investigation on generic inverse uncertainty characteristics under a well-accepted uncertainty analysis framework.Case studies based on field tracer experiments and synthetic numerical tracer experiments revealed several new rules.For example,the release load can be most easily inverted,and the source location is responsible for the largest uncertainty among the source parameters.The diffusion and convection processes are more sensitive than the dilution and pollutant attenuation processes to the optimization of objective functions in terms of structural uncertainty.The differences among the different objective functions are smaller for instantaneous release than for continuous release cases.Small monitoring errors affect the inversion results only slightly,which can be ignored in practice.Interestingly,the estimated values of the release location and time negatively deviate from the real values,and the extent is positively correlated with the relative size of the mixing zone to the objective river reach.These new findings improve decision making in emergency responses to sudden water pollution and guide the monitoring network design.
基金supported by National Natural Science Foundation of China(11961002,11761007,11861007)Key Project of the Natural Science Foundation of Jiangxi Province(20212ACB201001).
文摘In this paper,we mainly study an inverse source problem of time fractional diffusion equation in a bounded domain with an over-specified terminal condition at a fixed time.A novel regularization method,which we call the exponential Tikhonov regularization method with a parameter γ,is proposed to solve the inverse source problem,and the corresponding convergence analysis is given under a-priori and a-posteriori regularization parameter choice rules.Whenγis less than or equal to zero,the optimal convergence rate can be achieved and it is independent of the value of γ.However,when γ is greater than zero,the optimal convergence rate depends on the value of γ which is related to the regularity of the unknown source.Finally,numerical experiments are conducted for showing the effectiveness of the proposed exponential regularization method.
基金supported by National Science Foundation of China No.11171305 and No.91230203 and the work of X.Lu is partially supported by National Science Foundation of China No.11471253,the Fundamental Research Funds for the Central Universities(13lgzd07)and the PSTNS of Zhu Jiang in Guangzhou city(2011J2200099).
文摘In this paper,an inverse source problem for the time-fractional diffusion equation is investigated.The observational data is on the final time and the source term is assumed to be temporally independent and with a sparse structure.Here the sparsity is understood with respect to the pixel basis,i.e.,the source has a small support.By an elastic-net regularization method,this inverse source problem is formulated into an optimization problem and a semismooth Newton(SSN)algorithm is developed to solve it.A discretization strategy is applied in the numerical realization.Several one and two dimensional numerical examples illustrate the efficiency of the proposed method.
基金supported in part by the NSF grants DMS-0908325,CCF-0830161,EAR-0724527,and DMS-0968360the ONR grant N00014-12-1-0319+4 种基金a Key Project of the Major Research Plan of NSFC(No.91130004)a special research grant from Zhejiang Universitysupported in part by the NSF grant EAR-0724656German Science Foundation grant DFG-EH 328/1-1supported in part by the NSF grants EAR-0724656,DMS-0914595,and DMS-1042958.
文摘Knowledge of helium diffusion kinetics is critical for materials in which helium measurements are made,particulary for thermochronology.In most cases the helium ages were younger than expected,an observation attributes to diffusive loss of helium and the ejection of high energy alpha particles.Therefore it is important to accurately calculate the distribution of the source term within a sample.In this paper,the prediction of the helium concentrations as function of a spatially variable source term are considered.Both the forward and inverse solutions are presented.Under the assumption of radially symmetric geometry,an analytical solution is deduced based on the eigenfunction expansion.Two regularization methods,the Tikhonov regularization and the spectral cutoff regularization,are considered to obtain the regularized solution.Error estimates with optimal convergence order are shown between the exact solution and the regularized solution.Numerical examples are presented to illustrate the validity and effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China(No.91230119)
文摘A new method of the reproducing kernel Hilbert space is applied to a twodimensional parabolic inverse source problem with the final overdetermination. The exact and approximate solutions are both obtained in a reproducing kernel space. The approximate solution and its partial derivatives are proved to converge to the exact solution and its partial derivatives, respectively. A technique is proposed to improve some existing methods. Numerical results show that the method is of high precision, and confirm the robustness of our method for reconstructing source parameter.
文摘This paper deals with discontinuous dual reciprocity boundary element method for solving an inverse source problem.The aim of this work is to determine the source term in elliptic equations for nonhomogenous anisotropic media,where some additional boundary measurements are required.An equivalent formulation to the primary inverse problem is established based on the minimization of a functional cost,where a regularization term is employed to eliminate the oscillations of the noisy data.Moreover,an efficient algorithm is presented and tested for some numerical examples.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41574064)the Independent Research Projects of State Key Laboratory of Earthquake Dynamics (Grant No. LED2023A07)the National Major Science and Technology Facilities Project (Grant No. 1512Z0000001)。
文摘In this research, an arbitrarily oriented electric dipole at subsurface is used to simulate Seismogenic Electromagnetic(SEM) radiation emanating from a seismic zone during its gestation phase. Analytical synthesis of responses at the Lijiang magnetotelluric(MT) station has revealed that SEM radiation could induce identifiable anomalies in the electromagnetic(EM)spectrum, apparent resistivity and phase within specific frequency bands. Background variations were extracted from long-term observation data of Dali and Lijiang MT stations, enabling the identification of SEM anomalies related to the Yunlong and Yangbi earthquakes. Multiple parameters of dipole sources at subsurface were obtained by applying the Differential Ant Colony Optimization(DACO) algorithm to anomalous data of two stations with multi-frequencies and various response functions. The spatial distribution of these predicted dipoles is predominantly clustered in or around the seismogenic area, with their azimuthal orientation aligning towards the seismogenic fault in general. This study has demonstrated the potential of using subsurface electric dipole simulations for SEM radiation analysis, offering a feasible approach for the prediction and understanding of seismogenic zones.