Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing...To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations.展开更多
Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms.Therefore,the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of intere...Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms.Therefore,the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of interest.Based on this purpose,this paper deals with the type synthesis of 1T2R parallel mechanisms by investigating the topological structure coupling-reducing of the 3UPS&UP parallel mechanism.With the aid of the theory of mechanism topology,the analysis of the topological characteristics of the 3UPS&UP parallel mechanism is presented,which shows that there are highly coupled motions and constraints amongst the limbs of the mechanism.Three methods for structure coupling-reducing of the 3UPS&UP parallel mechanism are proposed,resulting in eight new types of 1T2R parallel mechanisms with one or zero coupling degree.One obtained parallel mechanism is taken as an example to demonstrate that a mechanism with zero coupling degree has an explicit form for forward kinematics.The process of type synthesis is in the order of permutation and combination;therefore,there are no omissions.This method is also appli cable to other configurations,and novel topological structures having simple forward kinematics can be obtained from an original mechanism via this method.展开更多
For understanding the possible deep-seated processes and geodynamic constrains on gold mineralization, comprehensive physicochemical and geochemical studies of gold mineralization have been undertaken within the paleo...For understanding the possible deep-seated processes and geodynamic constrains on gold mineralization, comprehensive physicochemical and geochemical studies of gold mineralization have been undertaken within the paleo-lithosphere framework during the metailogenic epoch from the northwestern part of the Jiaodong Peninsula in this paper. A general image of the paleo-crust has been remained although it has been superimposed and reformed by post-metailogenic tectonic movements. The gold ore deposits occur usually in local uplifts and gradient belts featuring a turn from steep to gentle in granite-metamorphic contact zones, relative uplifts of gradient zones of the Curier isothermal interfaces, depressions of the Moho discontinuity and areas where depth contours are cut by isotherms perpendicularly. Gold mineralization and lithogenesis are characterized by high temperature, low pressure and high strength of thermal flux. The depth of mineralization ranges from 0.8 to 4.5 km. The depth of the top interface of the granitic complex in the metallogenic epoch is about 3 km. There is a low-velocity layer (LVL) at the bottom of the upper crust with a depth close to 19.5 km, which may be a detachment belt in the crust. The appearance of the LVL indicates the existence of paleo-hyperthermal fluid or relics of molten magma chambers, which reflects partial melting within the crust during the diagenetic and metallogenic epochs and the superposition effects of strike-slip shearing of the Taulu fault zone. The subsidence of the Moho is probably attributed to the coupling process of the NW-SE continental collision between North China and the Yangtze Block and the strike-slip movement of the Tanlu fault accompanied with underplating of mantle magma in the northwestern part of the Jiaodong Peninsula. The underplating of mantle magma may result in partial melting and make granite magma transfer upwards. This is favorable for the migration of metallogenic materials from deep to shallow to be enriched to form deposits. Coupling interactions between the strike-slip of the Taulu fault, the underplating of mantle magma, partial melting within the crust, and hyperthermal fluid, etc. may be the important factors controlling the gold mineralization and spatial structures in the metailogenic system.展开更多
Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the info...Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the information of geophysical field was divided into two parts: deep and sh allow focus fields. And then, the information of two different fields was c ombined with that of deep seated geology and ore deposit features. The syntheti c result was adopted to analyze three dimension structure, to probe into crust mantle coupling effects of mineralization and dynamics of ore formation system .展开更多
The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activa...The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems.展开更多
The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to sim...The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure.展开更多
By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-f...By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.展开更多
The determination of natural products stereochemistry remains a formidable task.Residual dipolar couplings(RDCs)induced by anisotropic media are a powerful tool for determination of the stereochemistry of organic mole...The determination of natural products stereochemistry remains a formidable task.Residual dipolar couplings(RDCs)induced by anisotropic media are a powerful tool for determination of the stereochemistry of organic molecule in solution.This review will provide a short introduction on RDCs-based methodology for the structural elucidation of natural products.Special attention is given to the current availability of alignment media in organic solvents.The applications of RDCs for structural analysis of some examples of natural products were discussed and summarized.Graphical Abstract This review provides a short introduction on RDCs-based methodology for the structural elucidation of natural products.Special attention is given to the current availability of alignment media in organic solvents.The applications of RDCs for structural analysis of some examples of natural products were discussed and summarized.展开更多
Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplin...Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.展开更多
In this paper, a new nonlinear integrable coupling system of the soliton hierarchy is presented. Prom the Lax pairs, the coupled KdV equations are constructed successfully. Based on the prolongation method of Wahlquis...In this paper, a new nonlinear integrable coupling system of the soliton hierarchy is presented. Prom the Lax pairs, the coupled KdV equations are constructed successfully. Based on the prolongation method of Wahlquist and Estabrook, we study the prolongation structure of the nonlinear integrable couplings of the KdV equation.展开更多
In the light of results from study on coupling between deep and shallow structures in Xingtai earthquake area during the 'Ninth Five-Year Plan' period and other previous results from deep seismic refraction/re...In the light of results from study on coupling between deep and shallow structures in Xingtai earthquake area during the 'Ninth Five-Year Plan' period and other previous results from deep seismic refraction/reflection and seismic prospecting of petroleum, we infer that there exist a series of shallow faults in the upper crust above the 8 km-deep detachment surface in Xingtai macroseismic focal region, where none of the faults, including Aixinzhuang fault reaches the Quaternary stratum, except that the Xinhe fault cuts through the mid-Pleistocene formation upwards. Aixinzhuang fault and other faults extend downwards into Xinhe fault whereas the Xinhe listric fault stretches downwards at a low dip angle into the detachment surface. The abyssal fault with high dip angle under the detachment surface cutting through the middle and lower crust to Moho is the causative fault for the large Xingtai earthquake, whose dislocation can cause strong earthquakes, shallow fault activity and the motion of surface material. The shallow faults in the upper crust are not causative faults for strong earthquakes, although they may be active faults. The existence of the detachment surface brings about a special relationship between shallow and deep structures, i.e. they are relatively independent of each other and have effects on each other It not only transmits partial energy and deformation between the upper and lower crust,but also has a certain decoupling effect. Finally we conclude that active faults do not necessarily reach the latest stratum, and the age of uppermost faulted stratum cannot represent the latest active period of the fault. This put to us a significant question in regard to the age determination and study of active faults. Other noticeable questions are also inferred to in this study.展开更多
The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more ...The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.展开更多
This work presents a numerical investigation of the thermal–fluid–structure coupling behavior of the liquid natural gas(LNG)transported in the flexible corrugated cryogenic hose.A three-dimensional model of the corr...This work presents a numerical investigation of the thermal–fluid–structure coupling behavior of the liquid natural gas(LNG)transported in the flexible corrugated cryogenic hose.A three-dimensional model of the corrugated hose structure composed of multiple layers of different materials is established and coupled with turbulent LNG flow and heat transfer models in the commercial software ANSYS Workbench.The flow transport behavior,heat transfer across the hose layers,and structural response caused by the flow are analyzed.Parametric studies are performed to evaluate the impacts of inlet flow rate and thermal conductivity of insulation material on the temperature and structural stress of the corrugated hose.The study found that,compared with a regular operating condition,higher inlet flow velocities not only suppress the heat gain of the LNG but also lower the flow-induced structural stress.The insulation layer exhibits excellent performance in maintaining the temperature at the fluid–structure interface,showing little temperature change with respect to material thermal conductivity and ambient temperature.The simulation results may contribute to the research and design of the flexible corrugated cryogenic hoses and provide guidance for safer and more efficient field operations.展开更多
The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are ca...The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/rain, 500 r/min and 600 r/rain are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.展开更多
In this paper a type of 9-dimensional vector loop algebra F is constructed, which is devoted to establish an isospectral problem. It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtai...In this paper a type of 9-dimensional vector loop algebra F is constructed, which is devoted to establish an isospectral problem. It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtained by employing the Tu scheme, whose Hamiltonian structure is worked out by making use of constructed quadratic identity. The method given in the paper can be used to obtain many other integrable couplings and their Hamiltonian structures.展开更多
The electronic structures and magnetic properties of B-, C-, and N-doped BeO supercells are investigated by means of ab initio calculations using density functional theory. The magnetic exchange constants of C-doped B...The electronic structures and magnetic properties of B-, C-, and N-doped BeO supercells are investigated by means of ab initio calculations using density functional theory. The magnetic exchange constants of C-doped BeO at different doping levels are also calculated. A phenomenological band structure model based on p–d exchange-like p–p level repulsion between the dopants is proposed to explain the magnetic ground states in B-, C-, and N-doped BeO systems. The evolution from the antiferromagnetic phase to the ferromagnetic phase of C-doped BeO supercell with C concentration decreasing can also be well explained using this model. The findings in this study provide a simple guide for the design of band structure for a magnetic sp-electron semiconductor.展开更多
In an effort to simulate the dynamic behavior of a non-ferromagnetic conducting structure with consideration of the magnetic damping effect, a finite element code is developed, which is based on the reduced vector pot...In an effort to simulate the dynamic behavior of a non-ferromagnetic conducting structure with consideration of the magnetic damping effect, a finite element code is developed, which is based on the reduced vector potential (At) method, the step-by-step integration algorithm and a time-partitioned strategy. An additional term is introduced to the conventional governing equations of eddy current problems to take into account the velocity-induced electric field corre- sponding to the magnetic damping effect. The TEAM-16 benchmark problem is simulated using the proposed method in conjunction with the commercial code ANSYS. The simulation results indicate that the proposed method has better simulation accuracy, especially in the presence of a high-intensity external magnetic field.展开更多
The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This m...The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This multidisciplinary field known as FSI has been expanded to engineering fields such as offshore structures, tall slender structures and other flexible structures applications. The motivation of this paper is to investigate the numerical model of two-way coupling FSI partitioned flexible plate structure under fluid flow. The adopted partitioned method and approach utilized the advantage of the existing numerical algorithms in solving the two-way coupling fluid and structural interactions. The flexible plate was subjected to a fluid flow which causes large deformation on the fluid domain from the oscillation of the flexible plate. Both fluid and flexible plate are subjected to the interaction of load transfer within two physics by using the strong and weak coupling methods of MFS and Load Transfer Physics Environment, respectively. The oscillation and deformation results have been validated which demonstrate the reliability of both strong and weak method in resolving the two-way coupling problem in contribution of knowledge to the feasibility field study of ocean engineering and civil engineering.展开更多
Based on the actual vane-loaded tape helix slow wave structure, a new theoretical analytic model for calculating coupling impedance is proposed by Chen Qingyou, et al.(1999)with calculated values of dispersion in good...Based on the actual vane-loaded tape helix slow wave structure, a new theoretical analytic model for calculating coupling impedance is proposed by Chen Qingyou, et al.(1999)with calculated values of dispersion in good agreement with measured ones. In this paper, it is continued to use this model to calculate the coupling impedance of such a structure, and analyze the effects of the propagation power within vane gaps and the helix gap on the coupling impedance.As a result, the theoretical values are found to be in good agreement with the measured ones,with the maximum difference less than ±18%.展开更多
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.
基金financially supported by the State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment,Dalian University of Technology(Grant No.GZ23112)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2021ME146).
文摘To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations.
基金Supported by National Key R&D program of China(Grant No.2017YFB1301800)National Natural Science Foundation of China(Grant No.51622508)National Defense Basic Scientific Research program of China(Grant No.JCKY2017203B066)
文摘Direct kinematics with analytic solutions is critical to the real-time control of parallel mechanisms.Therefore,the type synthesis of a mechanism having explicit form of forward kinematics has become a topic of interest.Based on this purpose,this paper deals with the type synthesis of 1T2R parallel mechanisms by investigating the topological structure coupling-reducing of the 3UPS&UP parallel mechanism.With the aid of the theory of mechanism topology,the analysis of the topological characteristics of the 3UPS&UP parallel mechanism is presented,which shows that there are highly coupled motions and constraints amongst the limbs of the mechanism.Three methods for structure coupling-reducing of the 3UPS&UP parallel mechanism are proposed,resulting in eight new types of 1T2R parallel mechanisms with one or zero coupling degree.One obtained parallel mechanism is taken as an example to demonstrate that a mechanism with zero coupling degree has an explicit form for forward kinematics.The process of type synthesis is in the order of permutation and combination;therefore,there are no omissions.This method is also appli cable to other configurations,and novel topological structures having simple forward kinematics can be obtained from an original mechanism via this method.
基金supported jointly by the Fostering Plan Fund for Trans-century Excellent Talents and the Key Project of Science and Technology Research of the Ministry of Education(No.03178)the National Natural Science Foundation of China(No.40572063 and No.40234051).
文摘For understanding the possible deep-seated processes and geodynamic constrains on gold mineralization, comprehensive physicochemical and geochemical studies of gold mineralization have been undertaken within the paleo-lithosphere framework during the metailogenic epoch from the northwestern part of the Jiaodong Peninsula in this paper. A general image of the paleo-crust has been remained although it has been superimposed and reformed by post-metailogenic tectonic movements. The gold ore deposits occur usually in local uplifts and gradient belts featuring a turn from steep to gentle in granite-metamorphic contact zones, relative uplifts of gradient zones of the Curier isothermal interfaces, depressions of the Moho discontinuity and areas where depth contours are cut by isotherms perpendicularly. Gold mineralization and lithogenesis are characterized by high temperature, low pressure and high strength of thermal flux. The depth of mineralization ranges from 0.8 to 4.5 km. The depth of the top interface of the granitic complex in the metallogenic epoch is about 3 km. There is a low-velocity layer (LVL) at the bottom of the upper crust with a depth close to 19.5 km, which may be a detachment belt in the crust. The appearance of the LVL indicates the existence of paleo-hyperthermal fluid or relics of molten magma chambers, which reflects partial melting within the crust during the diagenetic and metallogenic epochs and the superposition effects of strike-slip shearing of the Taulu fault zone. The subsidence of the Moho is probably attributed to the coupling process of the NW-SE continental collision between North China and the Yangtze Block and the strike-slip movement of the Tanlu fault accompanied with underplating of mantle magma in the northwestern part of the Jiaodong Peninsula. The underplating of mantle magma may result in partial melting and make granite magma transfer upwards. This is favorable for the migration of metallogenic materials from deep to shallow to be enriched to form deposits. Coupling interactions between the strike-slip of the Taulu fault, the underplating of mantle magma, partial melting within the crust, and hyperthermal fluid, etc. may be the important factors controlling the gold mineralization and spatial structures in the metailogenic system.
文摘Based on the results of two dimension velo city structure, 1∶100 000 aeromagnetic anomaly, 1∶200 000 bouguer gravity anom aly and seismic anisotropy of Jiaodong and neighboring region in Shandong, China , the information of geophysical field was divided into two parts: deep and sh allow focus fields. And then, the information of two different fields was c ombined with that of deep seated geology and ore deposit features. The syntheti c result was adopted to analyze three dimension structure, to probe into crust mantle coupling effects of mineralization and dynamics of ore formation system .
基金This work was financially supported by the Key Project for National Science of "9.5" (Reward Ⅱ for National Science and Technol
文摘The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems.
基金National Natural Science Foundation of People’s Republic of China under Grant Nos.51178011 and 51778386the Key Fundamental Study Development Project of People’s Republic of China under Grant No.2011CB013602。
文摘The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure.
基金Supported by the Natural Science Foundation of Shanghai under Grant No.09ZR1410800the Science Foundation of Key Laboratory of Mathematics Mechanization under Grant No.KLMM0806+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.J50101Key Disciplines of Shanghai Municipality (S30104)
文摘By using a Lie algebra, an integrable couplings of the classicai-Boussinesq hierarchy is obtained. Then, the Hamiltonian structure of the integrable couplings of the classical-Boussinesq is obtained by the quadratic-form identity.
基金co-supported by National Natural Science Foundation of China(21572164,U1504207)the Sino-German Center for Research Promotion(GZ1289).
文摘The determination of natural products stereochemistry remains a formidable task.Residual dipolar couplings(RDCs)induced by anisotropic media are a powerful tool for determination of the stereochemistry of organic molecule in solution.This review will provide a short introduction on RDCs-based methodology for the structural elucidation of natural products.Special attention is given to the current availability of alignment media in organic solvents.The applications of RDCs for structural analysis of some examples of natural products were discussed and summarized.Graphical Abstract This review provides a short introduction on RDCs-based methodology for the structural elucidation of natural products.Special attention is given to the current availability of alignment media in organic solvents.The applications of RDCs for structural analysis of some examples of natural products were discussed and summarized.
文摘Firstly, a vector loop algebra G3 is constructed, by use of it multi-component KN hierarchy is obtained. Further, by taking advantage of the extending vector loop algebras G6 and G9 of G3 the double integrable couplings of the multi-component KN hierarchy are worked out respectively. Finally, Hamiltonian structures of obtained system are given by quadratic-form identity.
基金Project supported by the Scientific Research Fundation of the Education Department of Liaoning Province,China(GrantNo.L2010513)the China Postdoctoral Science Foundation(Grant No.2011M500404)
文摘In this paper, a new nonlinear integrable coupling system of the soliton hierarchy is presented. Prom the Lax pairs, the coupled KdV equations are constructed successfully. Based on the prolongation method of Wahlquist and Estabrook, we study the prolongation structure of the nonlinear integrable couplings of the KdV equation.
基金China Seismological Bureau during the "Ninth Five-Year Plan" period!Key Project(95-04-08-02)
文摘In the light of results from study on coupling between deep and shallow structures in Xingtai earthquake area during the 'Ninth Five-Year Plan' period and other previous results from deep seismic refraction/reflection and seismic prospecting of petroleum, we infer that there exist a series of shallow faults in the upper crust above the 8 km-deep detachment surface in Xingtai macroseismic focal region, where none of the faults, including Aixinzhuang fault reaches the Quaternary stratum, except that the Xinhe fault cuts through the mid-Pleistocene formation upwards. Aixinzhuang fault and other faults extend downwards into Xinhe fault whereas the Xinhe listric fault stretches downwards at a low dip angle into the detachment surface. The abyssal fault with high dip angle under the detachment surface cutting through the middle and lower crust to Moho is the causative fault for the large Xingtai earthquake, whose dislocation can cause strong earthquakes, shallow fault activity and the motion of surface material. The shallow faults in the upper crust are not causative faults for strong earthquakes, although they may be active faults. The existence of the detachment surface brings about a special relationship between shallow and deep structures, i.e. they are relatively independent of each other and have effects on each other It not only transmits partial energy and deformation between the upper and lower crust,but also has a certain decoupling effect. Finally we conclude that active faults do not necessarily reach the latest stratum, and the age of uppermost faulted stratum cannot represent the latest active period of the fault. This put to us a significant question in regard to the age determination and study of active faults. Other noticeable questions are also inferred to in this study.
基金Project supported by the National Natural Science Foundation of China(No.11972112)the Fundamental Research Funds for the Central Universities of China(Nos.N2103024 and N2103002)the Major Projects of Aero-Engines and Gasturbines(No.J2019-I-0008-0008)。
文摘The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.
基金financially supported by the National Natural Science Foundation of China(Grant No.U1906233)the Development Projects in Key Areas of Guangdong Province(Grant No.2020B1111040002)the Fundamental Research Funds for the Central Universities(Grant Nos.DUT20ZD213 and DUT20LAB308)。
文摘This work presents a numerical investigation of the thermal–fluid–structure coupling behavior of the liquid natural gas(LNG)transported in the flexible corrugated cryogenic hose.A three-dimensional model of the corrugated hose structure composed of multiple layers of different materials is established and coupled with turbulent LNG flow and heat transfer models in the commercial software ANSYS Workbench.The flow transport behavior,heat transfer across the hose layers,and structural response caused by the flow are analyzed.Parametric studies are performed to evaluate the impacts of inlet flow rate and thermal conductivity of insulation material on the temperature and structural stress of the corrugated hose.The study found that,compared with a regular operating condition,higher inlet flow velocities not only suppress the heat gain of the LNG but also lower the flow-induced structural stress.The insulation layer exhibits excellent performance in maintaining the temperature at the fluid–structure interface,showing little temperature change with respect to material thermal conductivity and ambient temperature.The simulation results may contribute to the research and design of the flexible corrugated cryogenic hoses and provide guidance for safer and more efficient field operations.
基金Outstanding Youth Science Fund Subsidization of Sichuan Province, China (No. 05204033).
文摘The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/rain, 500 r/min and 600 r/rain are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.
文摘In this paper a type of 9-dimensional vector loop algebra F is constructed, which is devoted to establish an isospectral problem. It follows that a Liouville integrable coupling system of the m-AKNS hierarchy is obtained by employing the Tu scheme, whose Hamiltonian structure is worked out by making use of constructed quadratic identity. The method given in the paper can be used to obtain many other integrable couplings and their Hamiltonian structures.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10975066)
文摘The electronic structures and magnetic properties of B-, C-, and N-doped BeO supercells are investigated by means of ab initio calculations using density functional theory. The magnetic exchange constants of C-doped BeO at different doping levels are also calculated. A phenomenological band structure model based on p–d exchange-like p–p level repulsion between the dopants is proposed to explain the magnetic ground states in B-, C-, and N-doped BeO systems. The evolution from the antiferromagnetic phase to the ferromagnetic phase of C-doped BeO supercell with C concentration decreasing can also be well explained using this model. The findings in this study provide a simple guide for the design of band structure for a magnetic sp-electron semiconductor.
基金supported by National Magnetic Confinement Fusion Science Program of China (No.2009GB104002)National Natural Science Foundation of China (Nos. 50977070,11021202 and 51007069)the National Basic Research Program of China (No. 2011CB610303)
文摘In an effort to simulate the dynamic behavior of a non-ferromagnetic conducting structure with consideration of the magnetic damping effect, a finite element code is developed, which is based on the reduced vector potential (At) method, the step-by-step integration algorithm and a time-partitioned strategy. An additional term is introduced to the conventional governing equations of eddy current problems to take into account the velocity-induced electric field corre- sponding to the magnetic damping effect. The TEAM-16 benchmark problem is simulated using the proposed method in conjunction with the commercial code ANSYS. The simulation results indicate that the proposed method has better simulation accuracy, especially in the presence of a high-intensity external magnetic field.
文摘The development and rapid usage of numerical codes for fluid-structure interaction(FSI) problems are of great relevance to researchers in many engineering fields such as civil engineering and ocean engineering. This multidisciplinary field known as FSI has been expanded to engineering fields such as offshore structures, tall slender structures and other flexible structures applications. The motivation of this paper is to investigate the numerical model of two-way coupling FSI partitioned flexible plate structure under fluid flow. The adopted partitioned method and approach utilized the advantage of the existing numerical algorithms in solving the two-way coupling fluid and structural interactions. The flexible plate was subjected to a fluid flow which causes large deformation on the fluid domain from the oscillation of the flexible plate. Both fluid and flexible plate are subjected to the interaction of load transfer within two physics by using the strong and weak coupling methods of MFS and Load Transfer Physics Environment, respectively. The oscillation and deformation results have been validated which demonstrate the reliability of both strong and weak method in resolving the two-way coupling problem in contribution of knowledge to the feasibility field study of ocean engineering and civil engineering.
基金Supported by the National Natural Science Foundation of China under grant no.69901004
文摘Based on the actual vane-loaded tape helix slow wave structure, a new theoretical analytic model for calculating coupling impedance is proposed by Chen Qingyou, et al.(1999)with calculated values of dispersion in good agreement with measured ones. In this paper, it is continued to use this model to calculate the coupling impedance of such a structure, and analyze the effects of the propagation power within vane gaps and the helix gap on the coupling impedance.As a result, the theoretical values are found to be in good agreement with the measured ones,with the maximum difference less than ±18%.