期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Geoacoustic Inversion for Bottom Parameters in the Deep-Water Area of the South China Sea 被引量:13
1
作者 吴双林 李整林 秦继兴 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第12期70-73,共4页
Bottom acoustic parameters play an important role in sound field prediction. Acoustic parameters in deep water are not well understood. Bottom acoustic parameters are sensitive to the transmission-loss (TL) data in ... Bottom acoustic parameters play an important role in sound field prediction. Acoustic parameters in deep water are not well understood. Bottom acoustic parameters are sensitive to the transmission-loss (TL) data in the shadow zone of deep water. We propose a multiple-step fill inversion method to invert sound speed, density and attenuation in deep water. Based on a uniform liquid hMf-space bottom model, sound speed of the bottom is inverted by using the long range TL at low frequency obtained in an acoustic propagation experiment conducted in the South China Sea (SCS) in summer 2014. Meanwhile, bottom density is estimated combining with the Hamilton sediment empirical relationship. Attenuation coefficients at different frequencies are then estimated from the TL data in the shadow zones by using the known sound speed and density as a constraint condition. The nonlinear relationship between attenuation coefficient and frequency is given in the end. Tile inverted bottom parameters can be used to forecast the transmission loss in the deep water area of SCS very we//. 展开更多
关键词 Geoacoustic Inversion for Bottom Parameters in the deep-water area of the south china sea TL SCS
下载PDF
The Relationship between Tectonic Subsidence and BSR of Upper Neogene in the Deep-Water Area of the Northern Continental Slope, South China Sea 被引量:6
2
作者 YU Xinghe WANG Jianzhong +5 位作者 LI Shengli FANG Jingnan JIANG Longyan CONG Xiaorong LIANG Jinqiang SHA Zhibin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第3期804-818,共15页
BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark whi... BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma. 展开更多
关键词 BSR tectonic subsidence quantitative simulation deep-water area Northern continental slope of south china sea
下载PDF
The tectonic differences between the east and the west in the deep-water area of the northern South China Sea 被引量:4
3
作者 XIA Zhongyu WAN Zhifeng +3 位作者 WANG Xianqing SHI Qiuhua CAI Song XIA Bin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第1期86-95,共10页
The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and t... The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and the west because of the special tectonic position and tectonic evolution process. In terms of submarine geomorphology, the eastern shelf-slope structure in Pearl River Mouth Basin is characterized by having wide sub-basins and narrow intervening highs, whereas the western (Qiongdongnan Basin) structure is characterized by narrow sub- basins and wide uplift. As to the structural features, the deep-water sags in the east are all structurally half- grabens, controlled by a series of south-dipping normal faults. While the west sags are mainly characterised by graben structures with faulting in both the south and north. With regards to the tectonic evolution, the east began neotectonic activity when the post-rifting stage had completed at the end of the Middle Miocene. In the Baiyun Sag, tectonic activity became strong and was characterised by rapid subsidence and obvious faulting. Whereas in the west, neotectonic activity began at the end of the Late Miocene with rapid deposition and weak fault activity. 展开更多
关键词 structural feature tectonic evolution tectonic difference deep-water basins northern south china sea
下载PDF
Types,characteristics and implication for hydrocarbon exploration of the Middle Miocene deep-water sediments in Beikang Basin,southern South China Sea 被引量:1
4
作者 Zhen-yu Lei Li Zhang +3 位作者 Ming Su Shuai-bing Luo Xing Qian Bo-da Zhang 《China Geology》 2019年第1期85-93,共9页
The internal seismic architectures of the Middle Miocene in Beikang Basin, southern South China Sea, were investigated and described using regional 2D seismic data from Guangzhou Marine Geology Survey. In particular, ... The internal seismic architectures of the Middle Miocene in Beikang Basin, southern South China Sea, were investigated and described using regional 2D seismic data from Guangzhou Marine Geology Survey. In particular, five typical seismic facies were identified based on an integrated analysis of the amplitude, continuity, contact relationship, and morphologies of seismic reflections. Bathyal-abyssal fine-grained sediments, deltaic front sandy bodies, turbidites, and small-scale turbidite channels were developed in the Middle Miocene according to the tectonic-sedimentary evolution of the sedimentary basins in the southern South China Sea. The findings of this study suggest that deltaic front sandy bodies and turbidites can be considered as the two major types of deep-water clastic reservoirs for the depression stage of Beikang Basin. A well-developed source-reservoir-cap assemblage was composed by deep rift-stage source rocks, deep-water clastic reservoirs of the Middle Miocene, and bathyal-abyssal deep-water fine-grained sediments after the Middle Miocene, implying a good potential for hydrocarbon exploration. 展开更多
关键词 deep-water sediment Middle MIOCENE Beikang basin southERN south china sea
下载PDF
Petroleum geology controlled by extensive detachment thinning of continental margin crust: A case study of Baiyun sag in the deep-water area of northern South China Sea 被引量:1
5
作者 PANG Xiong REN Jianye +3 位作者 ZHENG Jinyun LIU Jun YU Peng LIU Baojun 《Petroleum Exploration and Development》 2018年第1期29-42,共14页
The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water... The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea. 展开更多
关键词 northern south china sea Zhujiangkou basin Baiyun sag deep-water area CONTINENTAL margin CRUST DETACHMENT FAULT broad-deep FAULT depression CONTINENTAL shelf break petroleum geology
下载PDF
A New Discovery of Deep-Water Benthic Organisms from the Southwestern Dongsha Area,South China Sea
6
作者 WANG Yanlin YAN Pin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2273-2274,共2页
Dongsha waters are poorly studied for gas hydrates. Previous multi-channel seismic reflection and Chirp sub- bottom profiles show that numerous submarine mounds stand up to 100 m high above the seafloor over the conti... Dongsha waters are poorly studied for gas hydrates. Previous multi-channel seismic reflection and Chirp sub- bottom profiles show that numerous submarine mounds stand up to 100 m high above the seafloor over the continental slope of the SW Dongsha Island in northern margin of the South China Sea (SCS). These mounds are characterized by hardened seabed, seafloor gas venting and folded structures, which implies the existence of active mud volcanoes. This work aims to confirm this speculation by seafloor sample dredging and to explore the potential of gas hydrates. 展开更多
关键词 over A New Discovery of deep-water Benthic Organisms from the southwestern Dongsha area south china sea
下载PDF
A 3D basin modeling study of the factors controlling gas hydrate accumulation in the Shenhu Area of the South China Sea
7
作者 Zhi-yuan Xie Jian-gong Wei +2 位作者 Jin-yun Zheng Zhen Sun Kun Zhang 《China Geology》 2022年第2期218-233,共16页
Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms... Great advancement has been made on natural gas hydrates exploration and test production in the northern South China Sea.However,there remains a lot of key questions yet to be resolved,particularly about the mechanisms and the controls of gas hydrates enrichment.Numerical simulaution would play signficant role in addressing these questions.This study focused on the gas hydrate exploration in the Shenhu Area,Northern South China Sea.Based on the newly obtained borehole and multichannel reflection seismic data,the authors conducted an integrated 3D basin modeling study on gas hydrate.The results indicate that the Shenhu Area has favorable conditions for gas hydrate accumulation,such as temperature,pressure,hydrocarbon source,and tectonic setting.Gas hydrates are most concentrated in the Late Miocene strata,particularly in the structual highs between the Baiyun Sag and the Liwan Sag,and area to the south of it.It also proved the existence of overpressure in the main sag of source rocks,which was subject to compaction disequilibrium and hydrocarbon generation.It also shown that the regional fault activity is not conducive to gas hydrate accumulation due to excess gas seepage.The authors conjecture that fault activity may slightly weaken overpressure for the positive effect of hydrocarbon expulsion and areas lacking regional fault activity have better potential. 展开更多
关键词 3D basin modeling Gas hydrates Fault reactivation OVERPRESSURE Gas seepage Heat flow NGHs exploration trial engineering Oil and gas exploration engineering Shenhu area south china sea
下载PDF
Characteristics of seismic reflections in central region of the South China Sea and their geological significance 被引量:1
8
作者 刘建华 金翔龙 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2000年第3期103-113,共11页
More than 4 000 km 48-channel seismic reflection data from the central region of the South China Sea have been interpreted. Five seismic interfaces have been distinguished, named T1, T2, T4, T6 and Tg respectively Mea... More than 4 000 km 48-channel seismic reflection data from the central region of the South China Sea have been interpreted. Five seismic interfaces have been distinguished, named T1, T2, T4, T6 and Tg respectively Meanwhile, five seismic sequences numbered I - V have been divided with the ages of Quaternary and Pliocene, Later Mocene, Earlier and Middle Miocene, Oligocene and Pre- Oligocene separately. Sequences I-II overlie all parts of the area. In the continental slope and island slope, Sequences III-V are mainly found in the grabens. Sequence III is found at moot profiles of the deep-sea basin, and Sequnce IV is seen not only at the margins of the east subbasin but also at the margins of the southwest subbasin. Strong reflection from Moho is found at most profiles of the deep-sea basin. The depth of Moho varies between 10 and 12 km, with a thickness of 6- 8 km for the crust. Calculated by age-basement depth correlation formula, the age of basaltic basement in the southwest subbasin is 51-39 Ma. It is indicated that the evolution of the southwest subbasin is simultaneous with or earlier than that of the east subbasin. 展开更多
关键词 central region of the south china sea seismic reflection evolution of the back-arc basin
下载PDF
Geology and hydrocarbon accumulations in the deepwater of the northwestern South China Sea——with focus on natural gas 被引量:10
9
作者 WANG Zhenfeng SUN Zhipeng +5 位作者 ZHANG Daojun ZHU Jitian LI Xushen HUANG Baojia GUO Minggang JIANG Rufeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第10期57-70,共14页
The deepwater of the northwestern South China Sea is located in the central to southern parts of the Qiongdongnan Basin (QDN Basin), which is a key site for hydrocarbon exploration in recent years. In this study, th... The deepwater of the northwestern South China Sea is located in the central to southern parts of the Qiongdongnan Basin (QDN Basin), which is a key site for hydrocarbon exploration in recent years. In this study, the authors did a comprehensive analysis of gravity-magnetic data, extensive 3D seismic survey, cores and cuttings, paleontology and geochemical indexes, proposed the mechanism of natural gas origin, identified different oil and gas systems, and established the model of hydrocarbon accumulations in the deep-water region. Our basin tectonic simulation indicates that the evolution of QDN Basin was controlled by multiple-phased tectonic movements, such as Indochina-Eurasian Plate collision, Tibetan Uplift, Red River faulting and the expansion of the South China Sea which is characterized by Paleogene rifting, Neogene depression, and Eocene intensive faulting and lacustrine deposits. The drilling results show that this region is dominated by marine- terrestrial transitional and neritic-bathyal facies from the early Oligocene. The Yacheng Formation of the early Oligocene is rich in organic matter and a main gas-source rock. According to the geological-geochemical data from the latest drilling wells, Lingshui, Baodao, Changchang Sags have good hydrocarbon-generating potentials, where two plays from the Paleogene and Neogene reservoirs were developed. Those reservoirs occur in central canyon structural-lithologic trap zone, Changchang marginal trap zone and southern fault terrace of Baodao Sag. Among them, the central canyon trap zone has a great potential for exploration because the various reservoir- forming elements are well developed, i.e., good coal-measure source rocks, sufficient reservoirs from the Neogene turbidity sandstone and submarine fan, faults connecting source rock and reservoirs, effective vertical migration, late stage aggregation and favorable structural-lithological composite trapping. These study results provide an important scientific basis for hydrocarbon exploration in this region, evidenced by the recent discovery of the significant commercial LS-A gas field in the central canyon of the Lingshui Sag. 展开更多
关键词 south china sea DEEPWATER natural gas petroleum system central canyon reservoir-formingconditions Qiongdongnan basin
下载PDF
Thermal-history reconstruction of the Baiyun Sag in the deep-water area of the Pearl River Mouth Basin, northern South China Sea 被引量:3
10
作者 Xiaoyin TANG Shuchun YANG Shengbiao HU 《Frontiers of Earth Science》 SCIE CAS CSCD 2018年第3期532-544,共13页
The Baiyun Sag, located in the deep-water area of the northern South China Sea, is the largest and deepest subbasin in the Pearl River Mouth Basin and one of the most important hydrocarbon-accumulation depression area... The Baiyun Sag, located in the deep-water area of the northern South China Sea, is the largest and deepest subbasin in the Pearl River Mouth Basin and one of the most important hydrocarbon-accumulation depression areas in China. Thermal history is widely thought to be of great importance in oil and gas potential assessment of a basin as it controls the timing of hydrocarbon generation and expulsion from the source rock. In order to unravel the paleo-heat flow of the Baiyun Sag, we first analyzed tectonic subsidence of 55 pseudo-wells constructed based on newly interpreted seismic profiles, along with three drilled wells. We then carried out thermal modeling using the multi-stage finite stretching method and calibrated the results using collected present-day vitrinite reflectance data and temperature data. Results indicate that the first and second heating of the Baiyun Sag after 49 Ma ceased at 33.9 Ma and 23 Ma. Reconstructed average basal paleo- heat flow values at the end of the rifting periods are -57.7- 86.2 mW/m2 and -66.7-97.3 mW/m2, respectively. Following the last heating period at 23 Ma, the study area has undergone a persistent thermal attenuation phase, and basal heat flow has cooled down to ~64.0-79.2 mW/m2 at present. 展开更多
关键词 thermal history tectonic subsidence Baiyun Sag deep-water area south china sea
原文传递
Difference in full-filled time and its controlling factors in the Central Canyon of the Qiongdongnan Basin 被引量:5
11
作者 SHANG Zhilei XIE Xinong +4 位作者 LI Xushen ZHANG Daojun HE Yunlong YANG Xing CUI Mingzhe 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第10期81-89,共9页
Based on the interpretation of high resolution 2D/3D seismic data, sedimentary filling characteristics and full- filled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South ... Based on the interpretation of high resolution 2D/3D seismic data, sedimentary filling characteristics and full- filled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South China Sea have been studied. The research results indicate that the initial formation age of the Central Canyon is traced back to 11.6 Ma (T40), at which the canyon began to develop due to the scouring of turbidity currents from west to east. During the period of 11.6-8.2 Ma (T40-T31), strong downcutting by gravity flow occurred, which led to the formation of the canyon. The canyon fillings began to form since 8.2 Ma (T31) and were dominated by turbidite deposits, which constituted of lateral migration and vertical superposition of turbidity channels during the time of 8.2-5.5 Ma. The interbeds of turbidity currents deposits and mass transport deposits (MTDs) were developed in the period of 5.5-3.8 Ma (T30-T28). After then, the canyon fillings were primarily made up of large scale MTDs, interrupted by small scale turbidity channels and thin pelagic mudstones. The Central Canyon can be divided into three types according to the main controlling factors, geomorphology-controlled, fault-controlled and intrusion- modified canyons. Among them, the geomorphology-controlled canyon is developed at the Ledong, Lingshui, Songnan and western Baodao Depressions, situated in a confined basin center between the northern slope and the South Uplift Belt along the Central Depression Belt. The fault-controlled canyon is developed mainly along the deep-seated faults in the Changchang Depression and eastern Baodao Depression. Intrusion-modified canyon is only occurred in the Songnan Low Uplift, which is still mainly controlled by geomorphology, the intrusion just modified seabed morphology. The full-filled time of the Central Canyon differs from west to east, displaying a tendency of being successively late eastward. The geomorphology-controlled canyon was completely filled before 3.8 Ma (T28), but that in intrusion-modified canyon was delayed to 2.4 Ma (T27) because of the uplifted southern canyon wall. To the Changchang Depression, the complete filling time was successively late eastward, and the canyon in eastern Changchang Depression is still not fully filled up to today. Difference in full-filled time in the Central Canyon is mainly governed by multiple sediment supplies and regional tectonic activities. Due to sufficient supply of turbidity currents and MTDs from west and north respectively, western segment of the Central Canyon is entirely filled up earlier. Owing to slower sediment supply rate, together with differential subsidence by deep-seated faults, the full-filled time of the canyon is put off eastwards gradually. 展开更多
关键词 south china sea Qiongdongnan basin central Canyon sedimentary filling full-filled time
下载PDF
Lateral bearing characteristics of subsea wellhead assembly in the hydrate trial production engineering
12
作者 Jing Zeng Wen-wei Xie +8 位作者 Bei-bei Kou Jing-an Lu Xing-chen Li De-jun Cai Hao-xian Shi Ke-wei Zhang Hua-qing Liu Jin Li Bo Li 《China Geology》 CAS CSCD 2023年第3期455-465,共11页
Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction p... Conductor and suction anchor are the key equipment providing bearing capacity in the field of deep-water drilling or offshore engineering,which have the advantages of high operation efficiency and short construction period.In order to drill a horizontal well in the shallow hydrate reservoir in the deep water,the suction anchor wellhead assembly is employed to undertake the main vertical bearing capacity in the second round of hydrate trial production project,so as to reduce the conductor running depth and heighten the kick-off point position.However,the deformation law of the deep-water suction anchor wellhead assembly under the moving load of the riser is not clear,and it is necessary to understand the lateral bearing characteristics to guide the design of its structural scheme.Based on 3D solid finite element method,the solid finite element model of the suction anchor wellhead assembly is established.In the model,the seabed soil is divided into seven layers,the contact between the wellhead assembly and the soil is simulated,and the vertical load and bending moment are applied to the wellhead node to simulate the riser movement when working in the deep water.The lateral bearing stability of conventional wellhead assembly and suction anchor wellhead assembly under the influence of wellhead load is discussed.The analysis results show that the bending moment is the main factor affecting the lateral deformation of the wellhead string;the anti-bending performance from increasing the outer conductor diameter is better than that from increasing the conductor wall thickness;for the subsea wellhead,the suction anchor obviously improves the lateral bearing capacity and reduces the lateral deformation.The conduct of the suction anchor wellhead assembly still needs to be lowered to a certain depth that below the maximum disturbed depth to ensure the lateral bearing stability,Thus,a method for the minimum conductor running depth for the suction anchor wellhead assembly is developed.The field implementations show that compared with the first round of hydrate trial production project,the conductor running depth is increased by 9.42 m,and there is no risk of wellhead overturning during the trial production.The method for determining the minimum conductor running depth in this paper is feasible and will still play an important role in the subsequent hydrate exploration and development. 展开更多
关键词 Natural gas hydrate deep-water Subsea wellhead Suction anchor Wellhead stability 3D solid finite element method Hydrate trial exploration engineering Natural gas hydrate trial production Shenhu area The south china sea
下载PDF
Sedimentary evolution of the Central Canyon System in the Qiongdongnan Basin, northern South China Sea 被引量:2
13
作者 Ming Su Xinong Xie +3 位作者 Zhenfen Wang Tao Jiang Cheng Zhang Yunlong He 《Petroleum Research》 2016年第1期81-92,共12页
This study elucidates sedimentary evolution history of the Central Canyon System(CCS),a large axial submarine canyon in the Qiongdongnan Basin(QDNB),northern South China Sea.Thegeomorphological characteristics and inf... This study elucidates sedimentary evolution history of the Central Canyon System(CCS),a large axial submarine canyon in the Qiongdongnan Basin(QDNB),northern South China Sea.Thegeomorphological characteristics and infill architectures of the CCS are summarized based on theanalysis of two-and three-dimensional seismic data.Based on a comparative analysis of the CCS indifferent segments and evolutionary stages and in consideration of the tectono-sedimentary conditionsof the QDNB four stages of the sedimentary evolution of the CCS can be divided,i.e.initialdevelopment stage in the Late Miocene(11.6-5.7Ma),erosion-infilling stage in the Early Pliocene(5.7-3.7 Ma),tranquil infilling stage in the Late Pliocene(3.7-1.81 Ma),and rejuvenation stage sincethe Pleistocene(1.81 Ma to present).In the 1ate Middle Miocene(~11.6 Ma),the rudiment of CCswas developed by a regional tectonic transformation in the eastern part of the basin.In the EarlyPliocene,the CCS was further developed from west to east and restrained in the central depressionbelt of the basin due to abundant sediment supplies from the northwestern and northem provenances,the blocking effect of the southern uplift belt,and the restrictive geomorphological features of theeastern part of the basin.In the Late Pliocene,changes in the sedimentary environment resulted in thedevelopment of the CCS in the eastern part of the basin only.Since the Pleistocene,the joint action ofclimatic factors and geomorphological features of the eastern part of the basin led to the rejuvenationof the CCS. 展开更多
关键词 central Canyon System sedimentary evolution Late Miocene Qiongdongnan basin northern south china sea
原文传递
深水中大型气田滚动勘探技术体系与成效——以琼东南盆地中央峡谷A边际气田为例
14
作者 陈奎 胡德胜 +4 位作者 宋瑞有 龚宇 肖大志 黄安敏 朱玉双 《石油实验地质》 CAS CSCD 北大核心 2024年第1期1-10,共10页
为了促进琼东南盆地中央峡谷深水A边际气田开发,引入目标搜索研究、目标评价研究、目标钻探研究等完整气田滚动勘探技术体系。A边际气田目标搜索除利用传统的区带油气潜力目标搜索技术外,提出评价过程目标搜索技术,共搜索了5个油气潜力... 为了促进琼东南盆地中央峡谷深水A边际气田开发,引入目标搜索研究、目标评价研究、目标钻探研究等完整气田滚动勘探技术体系。A边际气田目标搜索除利用传统的区带油气潜力目标搜索技术外,提出评价过程目标搜索技术,共搜索了5个油气潜力区块,并优选A4构造进行油气目标评价。从圈闭解释与落实、圈闭烃类检测两方面对A4构造油气成藏主控因素开展研究。A4构造中部预测优势含气区具有强振幅属性、低密度、低速度、低纵波阻抗、低纵横波速度比等有利含气信息特征,总体为Ⅲ类AVO异常,且能够升级HL_0气组控制天然气地质储量,部署滚动探井A4-1井实施钻探,在黄流组钻遇气层超20 m,莺歌海组二段钻遇可疑气层近10 m,获得天然气探明地质储量近30亿立方米,钻探效果好。滚动勘探研究在深水A边际气田的应用,不仅有效地促进了A边际气田后续滚动勘探活动,而且证实了滚动勘探同样适用于深水油气勘探。 展开更多
关键词 油气滚动勘探 勘探成熟区 深水区 中央峡谷 琼东南盆地 南海北部
下载PDF
Hydrocarbon accumulation in the deep waters of South China Sea controlled by the tectonic cycles of marginal sea basins 被引量:3
15
作者 Gongcheng Zhang Hongjun Qu +3 位作者 Shixiang Liu Xiaojun Xie Zhao Zhao Huailei Shen 《Petroleum Research》 2016年第1期39-52,共14页
The tectonic cycle of the marginal sea basins in South China Sea(SCS)includes two cycles,i.e.,the formation and contraction of Palaeo-SCS and Neo-SCS.The northern part of SCS is a rift basin on a passive continental m... The tectonic cycle of the marginal sea basins in South China Sea(SCS)includes two cycles,i.e.,the formation and contraction of Palaeo-SCS and Neo-SCS.The northern part of SCS is a rift basin on a passive continental margin,while the the Nansha Block is a drifting rift basin.The southern part is a compound compressional basin on an active continental margin;the western part is a shear-extensional basin on a transform continental margin;the eastern part is an accretionary wedge basin on a subduction continental margin.The deep-water basins are mainly distributed on the continental slope and the the Nansha Block.There are three sets of source rocks in the deep-water areas of the northern continental margin in SCS,i.e.,Eocene terrestrial facies,early Oligocene transitional facies and late Oligocene marine facies.A set of Late Cretaceous-Early Oligocene terrestrial marine facies source rocks are developed in the drift-rift basin of SCS.Three sets of Oligocene,early Miocene and Mid-Miocene marine-terrestrial transitional facies source rocks are developed in the deep-water areas of both the southern and western continental margins of SCS.Four sets of reservoirs developed in the northern deep waters of SCS are dominated by deep sea fans.Two sets of reservoirs developed in the the Nansha Block are dominated by delta and biogenic reef.The southern part of SCS is dominated by deep sea fan and biogenic reef.Reservoirs of large channels and other clastic facies were developed in front of the estuaries,while biogenic reef bank was formed in the uplift zone.The hydrocarbon accumulation assemblages are mainly presented as Oligocene-Pliocene in the deep waters on the northern continental margin of SCS,Eocene-Lower Oligocene in the the Nansha Block,Oligocene-Pliocene and Oligocene-Miocene in the deep waters on the southern and western continental margin of SCS,respectively.The major hydrocarbon reservoir types in the deep waters of SCS are related to structural traps,deep water fans and biogenic reefs.The formation of basin,hydrocarbon and reservoir in the deep waters of SCS are controlled by the tectonic cycles of the marginal sea basins,revealing a great potential for hydrocarbon exploration. 展开更多
关键词 tectonic cycles marginal sea basins deep water area reservoir assemblages south china sea
原文传递
南海中央海盆高精度地震勘探揭示的大陆漂移过程
16
作者 LIANG Guanghe 《地学前缘》 EI CAS CSCD 北大核心 2023年第5期430-449,共20页
南海的形成和演化得到了广泛研究,前人提出了超过5种成因模式,当前流行是海底扩张模式,但它难以合理解释南海洋壳上的洋中脊跳跃和南海中央海盆上的大陆残片。本文首先基于南海中央海盆中的两条高精度地震勘探剖面,在深入剖析洋壳的分... 南海的形成和演化得到了广泛研究,前人提出了超过5种成因模式,当前流行是海底扩张模式,但它难以合理解释南海洋壳上的洋中脊跳跃和南海中央海盆上的大陆残片。本文首先基于南海中央海盆中的两条高精度地震勘探剖面,在深入剖析洋壳的分层结构基础上,对这两条地震勘探剖面进行了新的构造地质解释;然后通过伸展构造的形成过程,发展了地幔上涌和陆壳重力滑移双驱动大陆漂移模型;最后深入研究了南海的形成和演化过程。结果说明,南海的形成是一种“构造挤出+主动漂移”模式。构造挤出是印度-欧亚大陆碰撞造成的欧亚东南缘微陆块大规模被动挤出,而主动漂移是微陆块在被挤出后发生了主动裂解漂移。南海中央海盆上残留的地震反射特征,是微陆块主动漂移后造成的海底被扩张现象。并进一步恢复了南海演化过程中周边陆块的运动演化历史。所提出的新模式能够合理解释南海的洋中脊跳跃现象及大陆残片的成因机制。新大陆漂移模型为板块运动提供了一个新的动力模式。 展开更多
关键词 南海中央海盆 南海成因 高精度地震勘探 动力机制 大陆漂移
下载PDF
南海北部琼东南盆地中央峡谷体系沉积演化 被引量:63
17
作者 苏明 解习农 +3 位作者 王振峰 姜涛 张成 何云龙 《石油学报》 EI CAS CSCD 北大核心 2013年第3期467-478,共12页
基于琼东南盆地二维和三维地震资料,对中央峡谷体系的形态特征和内部充填结构进行了描述和解剖,指出中央峡谷体系的"分段性"和"多期次性"特征。通过对该大型轴向峡谷体系在不同部位和不同演化阶段的差异性对比,结... 基于琼东南盆地二维和三维地震资料,对中央峡谷体系的形态特征和内部充填结构进行了描述和解剖,指出中央峡谷体系的"分段性"和"多期次性"特征。通过对该大型轴向峡谷体系在不同部位和不同演化阶段的差异性对比,结合晚中新世以来琼东南盆地构造—沉积条件的变化,将琼东南盆地中央峡谷体系的沉积演化划分为4个阶段,分别是晚中新世的峡谷蕴育阶段、上新世早期峡谷的侵蚀-充填阶段、上新世晚期峡谷的平静充填阶段和更新世以来峡谷的"回春"阶段。研究表明,晚中新世早期(11.6 Ma)盆地东部的区域性构造变革事件促使了峡谷雏形的形成;上新世早期西北部和北部充足的沉积物供给、南部隆起的遮挡和东部地貌特征等因素控制了中央峡谷体系自西向东的发育,并将该峡谷限制在琼东南盆地的中央坳陷带内;上新世晚期沉积条件的变化,导致峡谷只在盆地东部发育;更新世以来的气候因素和盆地东部的地貌特征共同控制了中央峡谷体系在更新世的"再次繁盛"。 展开更多
关键词 中央峡谷体系 沉积演化 晚中新世 琼东南盆地 南海北部
下载PDF
琼东南盆地深水区长昌凹陷构造演化及其对层序样式的控制 被引量:29
18
作者 廖计华 王华 +8 位作者 孙志鹏 张道军 肖军 孙鸣 李彦丽 任桂媛 罗青 梅宾博 汪晶 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第8期3121-3132,共12页
运用平衡剖面技术对长昌凹陷的3条典型地震测线进行平衡复原,揭示长昌凹陷不同构造演化阶段的同沉积构造活动及其所形成的古构造格架,通过对凹陷内次级古构造单元及其演化类型的识别,综合分析构造演化对层序样式的控制,构建研究区沉积... 运用平衡剖面技术对长昌凹陷的3条典型地震测线进行平衡复原,揭示长昌凹陷不同构造演化阶段的同沉积构造活动及其所形成的古构造格架,通过对凹陷内次级古构造单元及其演化类型的识别,综合分析构造演化对层序样式的控制,构建研究区沉积层序综合演化模式。研究结果表明:长昌凹陷的构造格局依次经历了始新世-早渐新世断陷期、晚渐新世断坳转换期和新近纪坳陷期3个发展阶段,由此产生了3个具有不同古构造格架背景的盆地原型相互叠加。在裂陷Ⅰ幕和裂陷Ⅱ幕主要发育上倾坡脚型断裂陡坡带层序样式和多级陡坡断阶带层序样式,而裂陷Ⅲ幕发育下倾坡脚型断裂陡坡带层序样式和多级缓坡断阶带层序样式,在裂后热沉降阶段主要发育断裂型挠曲带层序样式以及少量下倾坡脚型断裂陡坡带层序样式,而裂后加速沉降阶段则发育简单挠曲带层序样式。与断坡带和挠曲带相关的大型低位三角洲、低位扇以及下切谷充填是长昌凹陷构造岩性或岩性油气藏的有利发育区。 展开更多
关键词 琼东南盆地 长昌凹陷 层序样式 深水勘探 南中国海
下载PDF
中国南海北部神狐海域高饱和度天然气水合物成藏特征及机制 被引量:57
19
作者 张伟 梁金强 +6 位作者 陆敬安 尉建功 苏丕波 方允鑫 郭依群 杨胜雄 张光学 《石油勘探与开发》 SCIE EI CAS CSCD 北大核心 2017年第5期670-680,共11页
基于中国南海北部神狐海域GMGS3钻探区内岩心、测井、二维及三维地震数据综合分析,对黏土质粉砂储集层高饱和度扩散型天然气水合物分布特征、差异聚集机理及其成藏机制进行研究。研究结果表明:高饱和度水合物通常对应着高电阻率、低声... 基于中国南海北部神狐海域GMGS3钻探区内岩心、测井、二维及三维地震数据综合分析,对黏土质粉砂储集层高饱和度扩散型天然气水合物分布特征、差异聚集机理及其成藏机制进行研究。研究结果表明:高饱和度水合物通常对应着高电阻率、低声波时差,强似海底反射(BSRs),且在BSRs下部可能存在泥底辟及气烟囱等形式的流体渗漏现象;水合物储集层以黏土质粉砂细粒沉积物为主,局部存在具有较高孔渗性的粉砂细粒沉积物;水合物类型以Ⅰ型为主,在Ⅰ型水合物层的底部可能存在Ⅱ型水合物;水合物气源为热解气、微生物气混合成因,来自白云凹陷中心深部的热成因气通过断层和泥底辟及气烟囱向浅层运移并与原位生物气混合,直至运移至水合物温度、压力稳定区域中富集形成高饱和度水合物;流体运移输导系统影响和控制了高饱和度水合物差异聚集成藏。 展开更多
关键词 天然气水合物 高饱和度 分布特征 成藏机制 神狐海域 珠江口盆地 南海北部
下载PDF
南海琼东南盆地气态烃地球化学特征及天然气水合物资源远景预测 被引量:26
20
作者 孙春岩 吴能有 +4 位作者 牛滨华 孙艳 崔义 罗伟 陈剑平 《现代地质》 CAS CSCD 北大核心 2007年第1期95-100,共6页
天然气水合物研究覆盖了地球物理学、地球化学和地质学等多门学科,其中勘查地球化学方法可以从海底介质中直接获得与天然气水合物有关的地球化学信息,圈定水合物异常区域。近些年来大量的研究工作和陆续发现的地球物理和地球化学证据显... 天然气水合物研究覆盖了地球物理学、地球化学和地质学等多门学科,其中勘查地球化学方法可以从海底介质中直接获得与天然气水合物有关的地球化学信息,圈定水合物异常区域。近些年来大量的研究工作和陆续发现的地球物理和地球化学证据显示,南海北部海域是我国勘查天然气水合物最有潜力的区域之一。依据广州海洋地质调查局2005年第4航次获得的南海琼东南盆地沉积物酸解烃测试结果和高异常段位同位素分析数据,探讨了琼东南盆地气态烃地球化学分布特征和异常成因。结合西沙海槽已有的勘探资料和水合物成藏地质条件,分析南海北部西沙海槽—琼东南地区与天然气水合物有关的地球化学异常特征,并对水合物成藏远景进行了预测。研究成果为南海北部天然气水合物勘探提供地球化学证据。 展开更多
关键词 天然气水合物 地球化学勘探 琼东南盆地 南海北部 有利远景区
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部