The area of the southwestern Nansha Trough is one of the most productive areas of the southern South China Sea.It is a typical semi-deep sea area of transition from shoal to abyssal zone.To understand distributions an...The area of the southwestern Nansha Trough is one of the most productive areas of the southern South China Sea.It is a typical semi-deep sea area of transition from shoal to abyssal zone.To understand distributions and roles of nitrogen forms involved in biogeochemical cycling in this area,contents of nitrogen in four extractable forms:nitrogen in ion exchangeable form(IEF-N),nitrogen in weak acid extractable form(WAEF-N),nitrogen in strong alkali extractable form(SAEF-N) and nitrogen in strong oxidation extractable form(SOEF-N),as well as in total nitrogen content(TN) in surface sediments were determined from samples collected from the cruise in April-May 1999.The study area was divided into three regions(A,B and C) in terms of clay sediment(<4 μm) content at <40%,40%-60% and >60%,respectively.Generally,region C was the richest in the nitrogen of all forms and region A the poorest,indicating that the finer the grain size is,the richer the contents of various nitrogen are.The burial efficiency of total nitrogen in surface sediments was 28.79%,indicating that more than 70% of nitrogen had been released and participated in biogeochemical recycling through sediment-water interface.展开更多
Dynamics of major picoplankton groups, Synechococcus (Syn), Prochlorococcus (Pro), picoeukaryotes (Euk) and heterotrophic bacteria (Bact) was investigated by flow cytometry for the first time in the Nansha Islands are...Dynamics of major picoplankton groups, Synechococcus (Syn), Prochlorococcus (Pro), picoeukaryotes (Euk) and heterotrophic bacteria (Bact) was investigated by flow cytometry for the first time in the Nansha Islands area in the South China Sea. Averaged over the whole investigation area, depth-weighted integrated cell abundance (DWA) of Syn, Pro, Euk and Bact was 1.6 (0.4-5.7)×103, 5.4 (0.1-7.3)×104, 0.7 (0.2-2.2)×103, and 2.3 (1.4-3.2)×105 cells/mL respectively. Picoautotrophic cell abundance was low in the northwest part of the Nansha Islands where surface water temperature was low and the upper mixed layer was shallow. Concurrently, a surface maximum vertical distribution pattern was observed in this area. While in the southeast and east zones where temperatures were relatively higher and nitraclines were deeper, picoplankton is abundant and a subsurface maximum around 50-75 m is observed. Coupling of horizontal and vertical distribution patterns of picoplankton abundance and hydrological status was found, suggesting a strong influence of currents and water column structure on picoplankton distribution in the investigation area. Contrary to that in the shelf water in the East China Sea, the relationship between Pro and Bact in the Nansha Islands area in the South China Sea was not significantly negative but weakly positive. Moreover, a similar distribution pattern of Syn and Pro was observed. Possible reasons for these differences in the two marine regimes were discussed.展开更多
Through the investigation on radioactive activities of water, sediment and some marine organismsin the Zhujiang Estuary, adjacent sea area and the distributary mouths of the Zhujiang River, activities of total α. rad...Through the investigation on radioactive activities of water, sediment and some marine organismsin the Zhujiang Estuary, adjacent sea area and the distributary mouths of the Zhujiang River, activities of total α. radioactivity, total β radioactivity, artificial radioactive 90Srand 157Cs, and factors inflencing the distribution and the content of U in seawater are studied.The mainly radioactive pollution substances and their sources in the sea area are studied by γ spectra obtained from sediment in the sea area. The results show that the main radioactivity substances are natural radioactivity U,Th series and 40K. which were produced by the modern industry and transported into the sea through the main current of the Zhujiang River.展开更多
Concentrations of organic matter, iron and manganese in the deep sea surface sediments in the Nansha Islands sea area, South China Sea are measured. Horizontal and vertical distributions of iron and manganese are disc...Concentrations of organic matter, iron and manganese in the deep sea surface sediments in the Nansha Islands sea area, South China Sea are measured. Horizontal and vertical distributions of iron and manganese are discussed. The vertical distribution of iron and manganese in the sediments results from reduction, diffusion, and redeposition of manganese (or iron) oxide and hydroxide in the sediment. There are the maxima of iron and manganese in solid phase in the top of the sediment, which is caused by the penetration of O2 and the upward flux of Mn2+ ( or Fe2+ ). Manganese bacteria play a very important role in the cycle of solid-phase iron and manganese in the ocean environment. Manganese bacteria oxidize Mn2+ ( or Fe2+ ) in dissolved state to Mn4+ ( or Fe3+ ) in oxidized state under the aerobic condition, whereas they reduce iron and manganese in anaerobic conditions.展开更多
基金Supported by the National Basic Research Program of China (973 Program, No. 2007CB407305)Qingdao Special Project for Outstanding Scientists (No.05-2-JC-90)the 100 Talents Project of Chinese Academy of Sciences (No.2003-202)
文摘The area of the southwestern Nansha Trough is one of the most productive areas of the southern South China Sea.It is a typical semi-deep sea area of transition from shoal to abyssal zone.To understand distributions and roles of nitrogen forms involved in biogeochemical cycling in this area,contents of nitrogen in four extractable forms:nitrogen in ion exchangeable form(IEF-N),nitrogen in weak acid extractable form(WAEF-N),nitrogen in strong alkali extractable form(SAEF-N) and nitrogen in strong oxidation extractable form(SOEF-N),as well as in total nitrogen content(TN) in surface sediments were determined from samples collected from the cruise in April-May 1999.The study area was divided into three regions(A,B and C) in terms of clay sediment(<4 μm) content at <40%,40%-60% and >60%,respectively.Generally,region C was the richest in the nitrogen of all forms and region A the poorest,indicating that the finer the grain size is,the richer the contents of various nitrogen are.The burial efficiency of total nitrogen in surface sediments was 28.79%,indicating that more than 70% of nitrogen had been released and participated in biogeochemical recycling through sediment-water interface.
文摘Dynamics of major picoplankton groups, Synechococcus (Syn), Prochlorococcus (Pro), picoeukaryotes (Euk) and heterotrophic bacteria (Bact) was investigated by flow cytometry for the first time in the Nansha Islands area in the South China Sea. Averaged over the whole investigation area, depth-weighted integrated cell abundance (DWA) of Syn, Pro, Euk and Bact was 1.6 (0.4-5.7)×103, 5.4 (0.1-7.3)×104, 0.7 (0.2-2.2)×103, and 2.3 (1.4-3.2)×105 cells/mL respectively. Picoautotrophic cell abundance was low in the northwest part of the Nansha Islands where surface water temperature was low and the upper mixed layer was shallow. Concurrently, a surface maximum vertical distribution pattern was observed in this area. While in the southeast and east zones where temperatures were relatively higher and nitraclines were deeper, picoplankton is abundant and a subsurface maximum around 50-75 m is observed. Coupling of horizontal and vertical distribution patterns of picoplankton abundance and hydrological status was found, suggesting a strong influence of currents and water column structure on picoplankton distribution in the investigation area. Contrary to that in the shelf water in the East China Sea, the relationship between Pro and Bact in the Nansha Islands area in the South China Sea was not significantly negative but weakly positive. Moreover, a similar distribution pattern of Syn and Pro was observed. Possible reasons for these differences in the two marine regimes were discussed.
文摘Through the investigation on radioactive activities of water, sediment and some marine organismsin the Zhujiang Estuary, adjacent sea area and the distributary mouths of the Zhujiang River, activities of total α. radioactivity, total β radioactivity, artificial radioactive 90Srand 157Cs, and factors inflencing the distribution and the content of U in seawater are studied.The mainly radioactive pollution substances and their sources in the sea area are studied by γ spectra obtained from sediment in the sea area. The results show that the main radioactivity substances are natural radioactivity U,Th series and 40K. which were produced by the modern industry and transported into the sea through the main current of the Zhujiang River.
基金supported by the National Natural Science Foundation of China(contract No.49706065)the Special Foundation of National Social Common Wealth Research(contract No.2001DIA50041)ZKCX2-SW-212 by Chinese Academy of Science
文摘Concentrations of organic matter, iron and manganese in the deep sea surface sediments in the Nansha Islands sea area, South China Sea are measured. Horizontal and vertical distributions of iron and manganese are discussed. The vertical distribution of iron and manganese in the sediments results from reduction, diffusion, and redeposition of manganese (or iron) oxide and hydroxide in the sediment. There are the maxima of iron and manganese in solid phase in the top of the sediment, which is caused by the penetration of O2 and the upward flux of Mn2+ ( or Fe2+ ). Manganese bacteria play a very important role in the cycle of solid-phase iron and manganese in the ocean environment. Manganese bacteria oxidize Mn2+ ( or Fe2+ ) in dissolved state to Mn4+ ( or Fe3+ ) in oxidized state under the aerobic condition, whereas they reduce iron and manganese in anaerobic conditions.